Repository logo
 

Functional analysis of sense organ specification in the Tribolium castaneum larva reveals divergent mechanisms in insects.

Published version
Peer-reviewed

Change log

Authors

Klann, Marleen 
Schacht, Magdalena Ines 
Benton, Matthew Alan 
Stollewerk, Angelika  ORCID logo  https://orcid.org/0000-0002-0689-1778

Abstract

Insects and other arthropods utilise external sensory structures for mechanosensory, olfactory, and gustatory reception. These sense organs have characteristic shapes related to their function, and in many cases are distributed in a fixed pattern so that they are identifiable individually. In Drosophila melanogaster, the identity of sense organs is regulated by specific combinations of transcription factors. In other arthropods, however, sense organ subtypes cannot be linked to the same code of gene expression. This raises the questions of how sense organ diversity has evolved and whether the principles underlying subtype identity in D. melanogaster are representative of other insects. Here, we provide evidence that such principles cannot be generalised, and suggest that sensory organ diversification followed the recruitment of sensory genes to distinct sensory organ specification mechanism. RESULTS: We analysed sense organ development in a nondipteran insect, the flour beetle Tribolium castaneum, by gene expression and RNA interference studies. We show that in contrast to D. melanogaster, T. castaneum sense organs cannot be categorised based on the expression or their requirement for individual or combinations of conserved sense organ transcription factors such as cut and pox neuro, or members of the Achaete-Scute (Tc ASH, Tc asense), Atonal (Tc atonal, Tc cato, Tc amos), and neurogenin families (Tc tap). Rather, our observations support an evolutionary scenario whereby these sensory genes are required for the specification of sense organ precursors and the development and differentiation of sensory cell types in diverse external sensilla which do not fall into specific morphological and functional classes. CONCLUSIONS: Based on our findings and past research, we present an evolutionary scenario suggesting that sense organ subtype identity has evolved by recruitment of a flexible sensory gene network to the different sense organ specification processes. A dominant role of these genes in subtype identity has evolved as a secondary effect of the function of these genes in individual or subsets of sense organs, probably modulated by positional cues.

Description

Keywords

Evolution, Gene expression, RNA interference, Sense organ development, Sense organ subtypes, Tribolium castaneum, Animals, Gene Expression, Larva, RNA Interference, Sense Organs, Tribolium

Journal Title

BMC Biol

Conference Name

Journal ISSN

1741-7007
1741-7007

Volume Title

19

Publisher

Springer Science and Business Media LLC