Show simple item record

dc.contributor.authorSmith, Ivanen
dc.contributor.authorMak, Cheuk Yuen
dc.date.accessioned2021-02-24T00:30:47Z
dc.date.available2021-02-24T00:30:47Z
dc.identifier.issn1016-443X
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/318042
dc.description.abstractLet $\omega$ denote an area form on $S^2$. Consider the closed symplectic 4-manifold $M=(S^2\times S^2, A\omega \oplus a \omega)$ with $0<a<A$. We show that there are families of displaceable Lagrangian tori $L_{0,x},\, L_{1,x} \subset M$, for $x \in [0,1]$, such that the two-component link $L_{0,x} \cup L_{1,x}$ is non-displaceable for each $x$.
dc.publisherSpringer
dc.rightsAll rights reserved
dc.rights.uri
dc.titleNon-displaceable Lagrangian links in four-manifoldsen
dc.typeArticle
prism.publicationNameGeometric and Functional Analysisen
dc.identifier.doi10.17863/CAM.65157
dcterms.dateAccepted2021-02-22en
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2021-02-22en
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/N01815X/1)
cam.orpheus.counter6*
rioxxterms.freetoread.startdate2024-02-23


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record