Non-displaceable Lagrangian links in four-manifolds
dc.contributor.author | Smith, Ivan | en |
dc.contributor.author | Mak, Cheuk Yu | en |
dc.date.accessioned | 2021-02-24T00:30:47Z | |
dc.date.available | 2021-02-24T00:30:47Z | |
dc.identifier.issn | 1016-443X | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/318042 | |
dc.description.abstract | Let $\omega$ denote an area form on $S^2$. Consider the closed symplectic 4-manifold $M=(S^2\times S^2, A\omega \oplus a \omega)$ with $0<a<A$. We show that there are families of displaceable Lagrangian tori $L_{0,x},\, L_{1,x} \subset M$, for $x \in [0,1]$, such that the two-component link $L_{0,x} \cup L_{1,x}$ is non-displaceable for each $x$. | |
dc.publisher | Springer | |
dc.rights | All rights reserved | |
dc.rights.uri | ||
dc.title | Non-displaceable Lagrangian links in four-manifolds | en |
dc.type | Article | |
prism.publicationName | Geometric and Functional Analysis | en |
dc.identifier.doi | 10.17863/CAM.65157 | |
dcterms.dateAccepted | 2021-02-22 | en |
rioxxterms.version | AM | |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | en |
rioxxterms.licenseref.startdate | 2021-02-22 | en |
rioxxterms.type | Journal Article/Review | en |
pubs.funder-project-id | EPSRC (EP/N01815X/1) | |
cam.orpheus.counter | 6 | * |
rioxxterms.freetoread.startdate | 2024-02-23 |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge