Repository logo
 

Planet formation in intermediate-separation binary systems

Published version
Peer-reviewed

Change log

Authors

Panić, O 
Haworth, TJ 
Petr-Gotzens, MG 
Miley, J 
Van Den Ancker, M 

Abstract

jats:titleABSTRACT</jats:title> jats:pWe report the first characterization of the individual discs in the intermediate-separation binary systems KK Oph and HD 144668 at millimetre wavelengths. In both systems, the circumprimary and the circumsecondary discs are detected in the millimetre continuum emission, but not in 13CO nor C18O lines. Even though the disc structure is only marginally resolved, we find indications of large-scale asymmetries in the outer regions of the primary discs, most likely due to perturbation by the companion. The derived dust masses are firmly above debris disc level for all stars. The primaries have about three times more dust in their discs than the secondaries. In the case of HD 144668, the opacity spectral index of the primary and secondary differ by a large margin of 0.69, which may be a consequence of the secondary disc being more compact. Upper limits on the gas masses imply less than 0.1 Mjup in any of these discs, meaning that giant planets can no longer form in them. Considering that there have been no massive gas discs identified to date in intermediate-separation binaries (i.e. binaries at a few hundred au separation), this opens space for speculation whether their binarity causes the removal of gas, with tidal interaction truncating the discs and hence shortening the accretion time-scale. More systematic studies in this respect are sorely needed.</jats:p>

Description

Keywords

planets and satellites: formation, protoplanetary discs, stars: pre-main-sequence, (stars:) binaries: visual, stars: variables: T Tauri, Herbig Ae/Be, submillimetre: planetary systems, techniques: interferometric

Journal Title

Monthly Notices of the Royal Astronomical Society

Conference Name

Journal ISSN

0035-8711
1365-2966

Volume Title

501

Publisher

Oxford University Press (OUP)

Rights

All rights reserved
Sponsorship
Science and Technology Facilities Council (ST/S000623/1)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (823823)
Science and Technology Facilities Council (ST/N000927/1)