Repository logo
 

Dislocations at coalescence boundaries in heteroepitaxial GaN/sapphire studied after the epitaxial layer has completely coalesced.

Accepted version
Peer-reviewed

No Thumbnail Available

Type

Article

Change log

Authors

O'Hanlon, TJ 
Zhu, T 
Massabuau, FC-P 
Oliver, RA 

Abstract

We have performed cross-sectional scanning capacitance microscopy (SCM), cathodoluminescence (CL) microscopy in the scanning electron microscope (SEM) and transmission electron microscopy (TEM) all on the same few-micron region of a GaN/sapphire sample. To achieve this, it was necessary to develop a process flow which allowed the same features viewed in a cleaved cross-section to be traced from one microscope to the next and to adapt the focused ion beam preparation of the TEM lamella to allow preparation of a site-specific sample on a pre-cleaved cross-section. Growth of our GaN/sapphire samples involved coalescence of three-dimensional islands to form a continuous film. Highly doped marker layers were included in the sample so that coalescence boundaries formed late in the film growth process could be identified in SCM and CL. Using TEM, we then identified one or more dislocations associated with each of several such late-coalescing boundaries. In contrast, previous studies have addressed coalescence boundaries formed earlier in the growth process and have shown that early-stage island coalescence does not lead to dislocation formation.

Description

Keywords

51 Physical Sciences, 5104 Condensed Matter Physics

Journal Title

Ultramicroscopy

Conference Name

Journal ISSN

0304-3991
1879-2723

Volume Title

Publisher

Elsevier BV
Sponsorship
European Research Council (279361)
Engineering and Physical Sciences Research Council (EP/M010589/1)
ERC
Relationships
Is supplemented by: