Repository logo
 

Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Kalinin, Kirill 
Töpfer, Julian D 
Alyatkin, Sergey 

Abstract

Vorticity is a key ingredient to a broad variety of fluid phenomena, and its quantised version is considered to be the hallmark of superfluidity. Circulating flows that correspond to vortices of a large topological charge, termed giant vortices, are notoriously difficult to realise and even when externally imprinted, they are unstable, breaking into many vortices of a single charge. In spite of many theoretical proposals on the formation and stabilisation of giant vortices in ultra-cold atomic Bose-Einstein condensates and other superfluid systems, their experimental realisation remains elusive. Polariton condensates stand out from other superfluid systems due to their particularly strong interparticle interactions combined with their non-equilibrium nature, and as such provide an alternative testbed for the study of vortices. Here, we non-resonantly excite an odd number of polariton condensates at the vertices of a regular polygon and we observe the formation of a stable discrete vortex state with a large topological charge as a consequence of antibonding frustration between nearest neighbouring condensates.

Description

Keywords

5108 Quantum Physics, 5102 Atomic, Molecular and Optical Physics, 51 Physical Sciences

Journal Title

Nat Commun

Conference Name

Journal ISSN

2041-1723
2041-1723

Volume Title

12

Publisher

Springer Science and Business Media LLC