Repository logo
 

The neural bases of resilient semantic system: evidence of variable neuro-displacement in cognitive systems

Published version
Peer-reviewed

Change log

Authors

Rice, Grace E. 
Lambon Ralph, Matthew A. 

Abstract

Abstract: The purpose of this study was to explore an important research goal in cognitive and clinical neuroscience: What are the neurocomputational mechanisms that make cognitive systems “well engineered” and thus resilient across a range of performance demands and to mild levels of perturbation or even damage? A new hypothesis called ‘variable neuro-displacement’ suggests that cognitive systems are formed with dynamic, spare processing capacity, which balances energy consumption against performance requirements and can be resilient to changes in performance demands. Here, we tested this hypothesis by investigating the neural dynamics of the semantic system by manipulating performance demand. The performance demand was manipulated with two levels of task difficulty (easy vs. hard) in two different ways (stimulus type and response timing). We found that the demanding semantic processing increased regional activity in both the domain-specific semantic representational system (anterior temporal lobe) and the parallel executive control networks (prefrontal, posterior temporal, and parietal regions). Functional connectivity between these regions was also increased during demanding semantic processing and these increases were related to better semantic task performance. Our results suggest that semantic cognition is made resilient by flexible, dynamic changes including increased regional activity and functional connectivity across both domain-specific and domain-general systems. It reveals the intrinsic resilience-related mechanisms of semantic cognition, mimicking alterations caused by perturbation or brain damage. Our findings provide a strong implication that the intrinsic mechanisms of a well-engineered semantic system might be attributed to the compensatory functional alterations in the impaired brain.

Description

Funder: H2020 European Research Council; doi: http://dx.doi.org/10.13039/100010663; Grant(s): GAP: 670428 - BRAIN2MIND_NEUROCOMP


Funder: University of Nottingham

Keywords

Original Article, Resilient cognitive systems, Neural variable displacement, Semantic cognition, Bilateral representation system, Functional connectivity

Journal Title

Brain Structure and Function

Conference Name

Journal ISSN

1863-2653
1863-2661

Volume Title

226

Publisher

Springer Berlin Heidelberg
Sponsorship
Medical research council (MR/R023883/1)
Intramural funding (MC_UU_00005/18)