Repository logo
 

Methods for Data Management in Multi-Centre MRI Studies and Applications to Traumatic Brain Injury


Type

Thesis

Change log

Authors

Winzeck, Stefan 

Abstract

Neuroimaging studies are becoming increasingly bigger, and multi-centre collaborations to collect data under similar protocols, but different scanning sites, are now commonplace.However, with increasing sample size the complexity of databases and the entailed data management as well as computational burden are growing. This thesis aims to highlight and address challenges faced by large multi-centre magnetic resonance imaging(MRI) studies. The methods implemented are then applied to traumatic brain injury (TBI) data.Firstly, a pre-processing pipeline for both anatomical and diffusion MRI was proposed, that allows for a high throughput of MRI scans. After describing the choices for processing tools,the performance of the integrated quality assurance was assessed based on the results from a large multi-centre dataset for TBI. Secondly, the applicability of the pipelines for processing mild TBI (mTBI) data from three sites was shown in a case study. For this, volumetric and diffusion metrics in the acute phase are analysed for their prognostic potential. Further-more, the cohort was examined for longitudinal changes. Thirdly, independent scan-rescan datasets are examined to gain a better understanding of the degree of reproducibility which can be achieved in imaging studies. This involves analysing the robustness of brain parcellations based on structural or diffusion imaging. The effect of using different MRI scanners or imaging protocols was also assessed and discussed. Fourthly, sources of diffusion MRI variability and different approaches to cope with these are reviewed. Using this foundation,state-of-the art methods for diffusion MRI harmonisation were compared against each other using both a benchmark dataset and mTBI cohort. Lastly, a solution to localise brain lesions was proposed. Its implications for lesion analysis, are assessed in the light of an application to a more severe TBI patient cohort, imaged on two different scanners. Furthermore, a lesion matching algorithm was introduced to automatically examine lesion evolution with time post-injury. In summary, this thesis explored different options for MRI data analysis in the context of large multi-centre studies. Different approaches are studied and compared using a number of different MRI datasets, including scan-rescan data across different MRI scanners and imaging protocols. The potential of the optimised solutions was illustrated through applications to TBI data.

Description

Date

2020-11-25

Advisors

Menon, David
Morgado Correia, Marta

Keywords

MRI, TBI

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
CENTER-TBI