Repository logo
 

High-Fidelity Sequence-Selective Duplex Formation by Recognition-Encoded Melamine Oligomers.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Troselj, Pavle 
Bolgar, Peter 
Hunter, Christopher A  ORCID logo  https://orcid.org/0000-0002-5182-1859

Abstract

Melamine oligomers composed of repeating triazine-piperidine units and equipped with phenol and phosphine oxide side-chains form H-bonded duplexes. The melamine backbone provides sufficient rigidity to prevent intramolecular folding of oligomers up to three recognition units in length, leading to reliable duplex formation between sequence complementary oligomers. NMR spectroscopy and isothermal titration calorimetry (ITC) were used to characterize the self-assembly properties of the oligomers. For length-complementary homo-oligomers, duplex formation in toluene is characterized by an increase in stability of an order of magnitude for every base-pair added to the chain. NMR spectra of dilute solutions of the AD 2-mer show that intramolecular H-bonding between neighboring recognition units on the chain (1,2-folding) does not occur. NMR spectra of dilute solutions of both the AAD and the ADD 3-mer show that 1,3-folding does not take place either. ITC was used to characterize interactions between all pairwise combinations of the six different 3-mer sequences, and the sequence complementary duplexes are approximately an order of magnitude more stable than duplexes with a single base mismatch. High-fidelity duplex formation combined with the synthetic accessibility of the monomer building blocks makes these systems attractive targets for further investigation.

Description

Keywords

Journal Title

Journal of the American Chemical Society

Conference Name

Journal ISSN

0002-7863

Volume Title

143

Publisher

Sponsorship
European Research Council (320539)