Repository logo
 

Regulation of Dishevelled DEP domain swapping by conserved phosphorylation sites.

Published version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Rutherford, Trevor J  ORCID logo  https://orcid.org/0000-0001-7294-1668
Freund, Stefan MV 

Abstract

Wnt signals bind to Frizzled receptors to trigger canonical and noncanonical signaling responses that control cell fates during animal development and tissue homeostasis. All Wnt signals are relayed by the hub protein Dishevelled. During canonical (β-catenin-dependent) signaling, Dishevelled assembles signalosomes via dynamic head-to-tail polymerization of its Dishevelled and Axin (DIX) domain, which are cross-linked by its Dishevelled, Egl-10, and Pleckstrin (DEP) domain through a conformational switch from monomer to domain-swapped dimer. The domain-swapped conformation of DEP masks the site through which Dishevelled binds to Frizzled, implying that DEP domain swapping results in the detachment of Dishevelled from Frizzled. This would be incompatible with noncanonical Wnt signaling, which relies on long-term association between Dishevelled and Frizzled. It is therefore likely that DEP domain swapping is differentially regulated during canonical and noncanonical Wnt signaling. Here, we use NMR spectroscopy and cell-based assays to uncover intermolecular contacts in the DEP dimer that are essential for its stability and for Dishevelled function in relaying canonical Wnt signals. These contacts are mediated by an intrinsically structured sequence spanning a conserved phosphorylation site upstream of the DEP domain that serves to clamp down the swapped N-terminal α-helix onto the structural core of a reciprocal DEP molecule in the domain-swapped configuration. Mutations of this phosphorylation site and its cognate surface on the reciprocal DEP core attenuate DEP-dependent dimerization of Dishevelled and its canonical signaling activity in cells without impeding its binding to Frizzled. We propose that phosphorylation of this crucial residue could be employed to switch off canonical Wnt signaling.

Description

Keywords

Dishevelled, Wnt signaling, domain swapping, phosphorylation, Conserved Sequence, Dishevelled Proteins, Humans, Models, Molecular, Mutation, Phosphorylation, Protein Domains, Protein Multimerization, Protein Stability, Serine, Structure-Activity Relationship, Thermodynamics, Wnt Signaling Pathway

Journal Title

Proc Natl Acad Sci U S A

Conference Name

Journal ISSN

0027-8424
1091-6490

Volume Title

118

Publisher

Proceedings of the National Academy of Sciences