Repository logo
 

Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma.

Accepted version
Peer-reviewed

No Thumbnail Available

Type

Article

Change log

Authors

Costanza, Mariantonia  ORCID logo  https://orcid.org/0000-0002-8959-1083
Prutsch, Nicole 
Gurnhofer, Elisabeth 

Abstract

Anaplastic large cell lymphoma (ALCL), an aggressive CD30-positive T-cell lymphoma, comprises systemic anaplastic lymphoma kinase (ALK)-positive, and ALK-negative, primary cutaneous and breast implant-associated ALCL. Prognosis of some ALCL subgroups is still unsatisfactory, and already in second line effective treatment options are lacking. To identify genes defining ALCL cell state and dependencies, we here characterize super-enhancer regions by genome-wide H3K27ac ChIP-seq. In addition to known ALCL key regulators, the AP-1-member BATF3 and IL-2 receptor (IL2R)-components are among the top hits. Specific and high-level IL2R expression in ALCL correlates with BATF3 expression. Confirming a regulatory link, IL-2R-expression decreases following BATF3 knockout, and BATF3 is recruited to IL2R regulatory regions. Functionally, IL-2, IL-15 and Neo-2/15, a hyper-stable IL-2/IL-15 mimic, accelerate ALCL growth and activate STAT1, STAT5 and ERK1/2. In line, strong IL-2Rα-expression in ALCL patients is linked to more aggressive clinical presentation. Finally, an IL-2Rα-targeting antibody-drug conjugate efficiently kills ALCL cells in vitro and in vivo. Our results highlight the importance of the BATF3/IL-2R-module for ALCL biology and identify IL-2Rα-targeting as a promising treatment strategy for ALCL.

Description

Keywords

Animals, Basic-Leucine Zipper Transcription Factors, Cell Line, Tumor, Cell Proliferation, Cell Survival, Gene Expression Regulation, Neoplastic, Humans, Immunoconjugates, Interleukin-15, Interleukin-2, Interleukin-2 Receptor alpha Subunit, Ki-1 Antigen, Lymphoma, Large-Cell, Anaplastic, Mice, Receptors, Interleukin-2, Regulatory Sequences, Nucleic Acid, Repressor Proteins, Signal Transduction, Xenograft Model Antitumor Assays

Journal Title

Nat Commun

Conference Name

Journal ISSN

2041-1723
2041-1723

Volume Title

12

Publisher

Springer Science and Business Media LLC

Rights

All rights reserved
Sponsorship
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (675712)