Repository logo
 

Intrinsic photogeneration of long-lived charges in a donor-orthogonal acceptor conjugated polymer.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Shaikh, Jordan 
Forster, Alex 
Minotto, Alessandro 
Cacialli, Franco 

Abstract

Efficient charge photogeneration in conjugated polymers typically requires the presence of a second component to act as electron acceptor. Here, we report a novel low band-gap conjugated polymer with a donor/orthogonal acceptor motif: poly-2,6-(4,4-dihexadecyl-4H-cyclopenta [2,1-b:3,4-b']dithiophene)-alt-2,6-spiro [cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene]-2',7'-dicarbonitrile, referred to as PCPDT-sFCN. The role of the orthogonal acceptor is to spatially isolate the LUMO from the HOMO, allowing for negligible exchange energy between electrons in these orbitals and minimising the energy gap between singlet and triplet charge transfer states. We employ ultrafast and microsecond transient absorption spectroscopy to demonstrate that, even in the absence of a separate electron acceptor, PCPDT-sFCN shows efficient charge photogeneration in both pristine solution and film. This efficient charge generation is a result of an isoenergetic singlet/triplet charge transfer state equilibrium acting as a reservoir for charge carrier formation. Furthermore, clear evidence of enhanced triplet populations, which form in less than 1 ps, is observed. Using group theory, we show that this ultrafast triplet formation is due to highly efficient, quantum mechanically allowed intersystem crossing between the bright, initially photoexcited local singlet state and the triplet charge transfer state. Remarkably, the free charges that form via the charge transfer state are extraordinarily long-lived with millisecond lifetimes, possibly due to the stabilisation imparted by the spatial separation of PCPDT-sFCN's donor and orthogonal acceptor motifs. The efficient generation of long-lived charge carriers in a pristine polymer paves the way for single-material applications such as organic photovoltaics and photodetectors.

Description

Keywords

3403 Macromolecular and Materials Chemistry, 34 Chemical Sciences, 3407 Theoretical and Computational Chemistry

Journal Title

Chem Sci

Conference Name

Journal ISSN

2041-6520
2041-6539

Volume Title

12

Publisher

Royal Society of Chemistry (RSC)
Sponsorship
Engineering and Physical Sciences Research Council (EP/S003126/1)