Show simple item record

dc.contributor.authorBeedessee, Girish
dc.contributor.authorKubota, Takaaki
dc.contributor.authorArimoto, Asuka
dc.contributor.authorNishitsuji, Koki
dc.contributor.authorWaller, Ross F.
dc.contributor.authorHisata, Kanako
dc.contributor.authorYamasaki, Shinichi
dc.contributor.authorSatoh, Noriyuki
dc.contributor.authorKobayashi, Jun’ichi
dc.contributor.authorShoguchi, Eiichi
dc.date.accessioned2021-10-13T15:24:10Z
dc.date.available2021-10-13T15:24:10Z
dc.date.issued2020-10-13
dc.date.submitted2020-06-02
dc.identifier.others12915-020-00873-6
dc.identifier.other873
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/329351
dc.description.abstractAbstract: Background: Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the detriment of marine ecosystems and human health. Our understanding of dinoflagellate toxin biosynthesis has been hampered by their unusually large genomes. To overcome this challenge, for the first time, we sequenced the genome, microRNAs, and mRNA isoforms of a basal dinoflagellate, Amphidinium gibbosum, and employed an integrated omics approach to understand its secondary metabolite biosynthesis. Results: We assembled the ~ 6.4-Gb A. gibbosum genome, and by probing decoded dinoflagellate genomes and transcriptomes, we identified the non-ribosomal peptide synthetase adenylation domain as essential for generation of specialized metabolites. Upon starving the cells of phosphate and nitrogen, we observed pronounced shifts in metabolite biosynthesis, suggestive of post-transcriptional regulation by microRNAs. Using Iso-Seq and RNA-seq data, we found that alternative splicing and polycistronic expression generate different transcripts for secondary metabolism. Conclusions: Our genomic findings suggest intricate integration of various metabolic enzymes that function iteratively to synthesize metabolites, providing mechanistic insights into how dinoflagellates synthesize secondary metabolites, depending upon nutrient availability. This study provides insights into toxin production associated with dinoflagellate blooms. The genome of this basal dinoflagellate provides important clues about dinoflagellate evolution and overcomes the large genome size, which has been a challenge previously.
dc.languageen
dc.publisherBioMed Central
dc.subjectResearch Article
dc.subjectPolyketide synthases
dc.subjectHarmful algal blooms
dc.subjectDinoflagellates
dc.subjectIso-Seq
dc.subjectDuplication
dc.subjectAmphidinium
dc.titleIntegrated omics unveil the secondary metabolic landscape of a basal dinoflagellate
dc.typeArticle
dc.date.updated2021-10-13T15:24:09Z
prism.issueIdentifier1
prism.publicationNameBMC Biology
prism.volume18
dc.identifier.doi10.17863/CAM.76799
dcterms.dateAccepted2020-09-18
rioxxterms.versionofrecord10.1186/s12915-020-00873-6
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidBeedessee, Girish [0000-0003-4397-7471]
dc.identifier.eissn1741-7007


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record