The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends
Authors
Herling, Therese W.
Andrzejewska, Ewa
Miller, Alyssa M.
Trinkaus, Victoria A.
Dobson, Christopher M.
Publication Date
2021-10-14Journal Title
Nature Communications
Publisher
Nature Publishing Group UK
Volume
12
Issue
1
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Schneider, M. M., Gautam, S., Herling, T. W., Andrzejewska, E., Krainer, G., Miller, A. M., Trinkaus, V. A., et al. (2021). The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nature Communications, 12 (1) https://doi.org/10.1038/s41467-021-25966-w
Description
Funder: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)); doi: https://doi.org/10.13039/100011199
Funder: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council); doi: https://doi.org/10.13039/100010663
Abstract
Abstract: Molecular chaperones contribute to the maintenance of cellular protein homoeostasis through assisting de novo protein folding and preventing amyloid formation. Chaperones of the Hsp70 family can further disaggregate otherwise irreversible aggregate species such as α-synuclein fibrils, which accumulate in Parkinson’s disease. However, the mechanisms and kinetics of this key functionality are only partially understood. Here, we combine microfluidic measurements with chemical kinetics to study α-synuclein disaggregation. We show that Hsc70 together with its co-chaperones DnaJB1 and Apg2 can completely reverse α-synuclein aggregation back to its soluble monomeric state. This reaction proceeds through first-order kinetics where monomer units are removed directly from the fibril ends with little contribution from intermediate fibril fragmentation steps. These findings extend our mechanistic understanding of the role of chaperones in the suppression of amyloid proliferation and in aggregate clearance, and inform on possibilities and limitations of this strategy in the development of therapeutics against synucleinopathies.
Keywords
Article, /631/45/470/1981, /631/45/470/2284, /631/57/2272/1590, /631/57/2265, /639/638/440/56, /147/3, /123, /82/62, /101/62, article
Identifiers
s41467-021-25966-w, 25966
External DOI: https://doi.org/10.1038/s41467-021-25966-w
This record's URL: https://www.repository.cam.ac.uk/handle/1810/329477
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.