Repository logo
 

Mechanistic insight into the chemical treatments of monolayer transition metal disulfides for photoluminescence enhancement

Published version
Peer-reviewed

Change log

Abstract

Abstract: There is a growing interest in obtaining high quality monolayer transition metal disulfides for optoelectronic applications. Surface treatments using a range of chemicals have proven effective to improve the photoluminescence yield of these materials. However, the underlying mechanism for the photoluminescence enhancement is not clear, which prevents a rational design of passivation strategies. Here, a simple and effective approach to significantly enhance the photoluminescence is demonstrated by using a family of cation donors, which we show to be much more effective than commonly used p-dopants. We develop a detailed mechanistic picture for the action of these cation donors and demonstrate that one of them, bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI), enhances the photoluminescence of both MoS2 and WS2 to a level double that of the currently best performing super-acid trifluoromethanesulfonimide (H-TFSI) treatment. In addition, the ionic salts used in our treatments are compatible with greener solvents and are easier to handle than super-acids, providing the possibility of performing treatments during device fabrication. This work sets up rational selection rules for ionic chemicals to passivate transition metal disulfides and increases their potential in practical optoelectronic applications.

Description

Funder: RCUK | Engineering and Physical Sciences Research Council (EPSRC); doi: https://doi.org/10.13039/501100000266


Funder: funding from the Royal society through a Newton international fellowship


Funder: the Winton programme for the physics of sustainability


Funder: The Royal society and Tata group. The Royal society funding through a Newton international fellowship. The Winton programme for the physics of sustainability.

Keywords

Article, /639/301/1005/1007, /639/925/357/1018, /132, /140/125, /128, /140/146, /140/133, /119/118, article

Journal Title

Nature Communications

Conference Name

Journal ISSN

2041-1723

Volume Title

12

Publisher

Nature Publishing Group UK
Sponsorship
Vetenskapsrådet (Swedish Research Council) (2018-06610)
Royal Society (UF150033)
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) (758826, 756962)