Floer Theory of Higher Rank Quiver 3-folds
View / Open Files
Authors
Smith, Ivan
Publication Date
2021Journal Title
COMMUNICATIONS IN MATHEMATICAL PHYSICS
ISSN
0010-3616
Publisher
Springer Science and Business Media LLC
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Smith, I. (2021). Floer Theory of Higher Rank Quiver 3-folds. COMMUNICATIONS IN MATHEMATICAL PHYSICS https://doi.org/10.1007/s00220-021-04252-2
Abstract
<jats:title>Abstract</jats:title><jats:p>We study threefolds <jats:italic>Y</jats:italic> fibred by <jats:inline-formula><jats:alternatives><jats:tex-math>$$A_m$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>A</mml:mi>
<mml:mi>m</mml:mi>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>-surfaces over a curve <jats:italic>S</jats:italic> of positive genus. An ideal triangulation of <jats:italic>S</jats:italic> defines, for each rank <jats:italic>m</jats:italic>, a quiver <jats:inline-formula><jats:alternatives><jats:tex-math>$$Q(\Delta _m)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>Q</mml:mi>
<mml:mo>(</mml:mo>
<mml:msub>
<mml:mi>Δ</mml:mi>
<mml:mi>m</mml:mi>
</mml:msub>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>, hence a <jats:inline-formula><jats:alternatives><jats:tex-math>$$CY_3$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>C</mml:mi>
<mml:msub>
<mml:mi>Y</mml:mi>
<mml:mn>3</mml:mn>
</mml:msub>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>-category <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathcal {C}(W)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>C</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>W</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> for any potential <jats:italic>W</jats:italic> on <jats:inline-formula><jats:alternatives><jats:tex-math>$$Q(\Delta _m)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>Q</mml:mi>
<mml:mo>(</mml:mo>
<mml:msub>
<mml:mi>Δ</mml:mi>
<mml:mi>m</mml:mi>
</mml:msub>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>. We show that for <jats:inline-formula><jats:alternatives><jats:tex-math>$$\omega $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>ω</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> in an open subset of the Kähler cone, a subcategory of a sign-twisted Fukaya category of <jats:inline-formula><jats:alternatives><jats:tex-math>$$(Y,\omega )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>Y</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>ω</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> is quasi-isomorphic to <jats:inline-formula><jats:alternatives><jats:tex-math>$$(\mathcal {C},W_{[\omega ]})$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>C</mml:mi>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mi>W</mml:mi>
<mml:mrow>
<mml:mo>[</mml:mo>
<mml:mi>ω</mml:mi>
<mml:mo>]</mml:mo>
</mml:mrow>
</mml:msub>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> for a certain generic potential <jats:inline-formula><jats:alternatives><jats:tex-math>$$W_{[\omega ]}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>W</mml:mi>
<mml:mrow>
<mml:mo>[</mml:mo>
<mml:mi>ω</mml:mi>
<mml:mo>]</mml:mo>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>. This partially establishes a conjecture of Goncharov (in: Algebra, geometry, and physics in the 21st century, Birkhäuser/Springer, Cham, 2017) concerning ‘categorifications’ of cluster varieties of framed <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathbb {P}}GL_{m+1}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>P</mml:mi>
<mml:mi>G</mml:mi>
<mml:msub>
<mml:mi>L</mml:mi>
<mml:mrow>
<mml:mi>m</mml:mi>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>-local systems on <jats:italic>S</jats:italic>, and gives a symplectic geometric viewpoint on results of Gaiotto et al. (Ann Henri Poincaré 15(1):61–141, 2014) on ‘theories of class <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {S}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>S</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula>’.</jats:p>
Sponsorship
Engineering and Physical Sciences Research Council (EP/N01815X/1)
Identifiers
External DOI: https://doi.org/10.1007/s00220-021-04252-2
This record's URL: https://www.repository.cam.ac.uk/handle/1810/329736
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk