Floer Theory of Higher Rank Quiver 3-folds
dc.contributor.author | Smith, Ivan | |
dc.date.accessioned | 2021-10-21T23:30:32Z | |
dc.date.available | 2021-10-21T23:30:32Z | |
dc.date.issued | 2021-12 | |
dc.identifier.issn | 0010-3616 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/329736 | |
dc.description.abstract | <jats:title>Abstract</jats:title><jats:p>We study threefolds <jats:italic>Y</jats:italic> fibred by <jats:inline-formula><jats:alternatives><jats:tex-math>$$A_m$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula>-surfaces over a curve <jats:italic>S</jats:italic> of positive genus. An ideal triangulation of <jats:italic>S</jats:italic> defines, for each rank <jats:italic>m</jats:italic>, a quiver <jats:inline-formula><jats:alternatives><jats:tex-math>$$Q(\Delta _m)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>Δ</mml:mi> <mml:mi>m</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>, hence a <jats:inline-formula><jats:alternatives><jats:tex-math>$$CY_3$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>C</mml:mi> <mml:msub> <mml:mi>Y</mml:mi> <mml:mn>3</mml:mn> </mml:msub> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>-category <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathcal {C}(W)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>(</mml:mo> <mml:mi>W</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> for any potential <jats:italic>W</jats:italic> on <jats:inline-formula><jats:alternatives><jats:tex-math>$$Q(\Delta _m)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>Δ</mml:mi> <mml:mi>m</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>. We show that for <jats:inline-formula><jats:alternatives><jats:tex-math>$$\omega $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ω</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> in an open subset of the Kähler cone, a subcategory of a sign-twisted Fukaya category of <jats:inline-formula><jats:alternatives><jats:tex-math>$$(Y,\omega )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ω</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> is quasi-isomorphic to <jats:inline-formula><jats:alternatives><jats:tex-math>$$(\mathcal {C},W_{[\omega ]})$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>C</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>ω</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> for a certain generic potential <jats:inline-formula><jats:alternatives><jats:tex-math>$$W_{[\omega ]}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>W</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>ω</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula>. This partially establishes a conjecture of Goncharov (in: Algebra, geometry, and physics in the 21st century, Birkhäuser/Springer, Cham, 2017) concerning ‘categorifications’ of cluster varieties of framed <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathbb {P}}GL_{m+1}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>P</mml:mi> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>-local systems on <jats:italic>S</jats:italic>, and gives a symplectic geometric viewpoint on results of Gaiotto et al. (Ann Henri Poincaré 15(1):61–141, 2014) on ‘theories of class <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {S}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>S</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>’.</jats:p> | |
dc.publisher | Springer Science and Business Media LLC | |
dc.rights | All rights reserved | |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | |
dc.title | Floer Theory of Higher Rank Quiver 3-folds | |
dc.type | Article | |
prism.publicationName | COMMUNICATIONS IN MATHEMATICAL PHYSICS | |
dc.identifier.doi | 10.17863/CAM.77183 | |
dcterms.dateAccepted | 2021-10-17 | |
rioxxterms.versionofrecord | 10.1007/s00220-021-04252-2 | |
rioxxterms.version | AM | |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | |
rioxxterms.licenseref.startdate | 2021-10-17 | |
dc.identifier.eissn | 1432-0916 | |
rioxxterms.type | Journal Article/Review | |
pubs.funder-project-id | Engineering and Physical Sciences Research Council (EP/N01815X/1) | |
cam.issuedOnline | 2021-11-11 | |
cam.orpheus.success | Tue Feb 01 19:02:05 GMT 2022 - Embargo updated | * |
cam.orpheus.counter | 5 | |
rioxxterms.freetoread.startdate | 2022-11-11 |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge