Spiral Honeycomb Microstructured Bacterial Cellulose for Increased Strength and Toughness.
View / Open Files
Authors
Yu, Kui
Balasubramanian, Srikkanth
Pahlavani, Helda
Mirzaali, Mohammad J
Publication Date
2020-11-11Journal Title
ACS Appl Mater Interfaces
ISSN
1944-8244
Publisher
American Chemical Society (ACS)
Volume
12
Issue
45
Pages
50748-50755
Language
eng
Type
Article
This Version
VoR
Physical Medium
Print-Electronic
Metadata
Show full item recordCitation
Yu, K., Balasubramanian, S., Pahlavani, H., Mirzaali, M. J., Zadpoor, A. A., & Aubin-Tam, M. (2020). Spiral Honeycomb Microstructured Bacterial Cellulose for Increased Strength and Toughness.. ACS Appl Mater Interfaces, 12 (45), 50748-50755. https://doi.org/10.1021/acsami.0c15886
Abstract
Natural materials, such as nacre and silk, exhibit both high strength and toughness due to their hierarchical structures highly organized at the nano-, micro-, and macroscales. Bacterial cellulose (BC) presents a hierarchical fibril structure at the nanoscale. At the microscale, however, BC nanofibers are distributed randomly. Here, BC self-assembles into a highly organized spiral honeycomb microstructure giving rise to a high tensile strength (315 MPa) and a high toughness value (17.8 MJ m-3), with pull-out and de-spiral morphologies observed during failure. Both experiments and finite-element simulations indicate improved mechanical properties resulting from the honeycomb structure. The mild fabrication process consists of an in situ fermentation step utilizing poly(vinyl alcohol), followed by a post-treatment including freezing-thawing and boiling. This simple self-assembly production process is highly scalable, does not require any toxic chemicals, and enables the fabrication of light, strong, and tough hierarchical composite materials with tunable shape and size.
Keywords
bio-inspired materials, biocomposites, cellular materials, self-assembly, sustainability, Biomimetic Materials, Cellulose, Hypocreales, Materials Testing, Particle Size, Surface Properties, Tensile Strength
Identifiers
External DOI: https://doi.org/10.1021/acsami.0c15886
This record's URL: https://www.repository.cam.ac.uk/handle/1810/329910
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Licence URL: https://creativecommons.org/licenses/by-nc-nd/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk