Ratcheted diffusion transport through crowded nanochannels.
View / Open Files
Publication Date
2013-10-31Journal Title
Sci Rep
ISSN
2045-2322
Publisher
Springer Science and Business Media LLC
Volume
3
Pages
3103
Language
eng
Type
Article
This Version
VoR
Physical Medium
Electronic
Metadata
Show full item recordCitation
Lappala, A., Zaccone, A., & Terentjev, E. (2013). Ratcheted diffusion transport through crowded nanochannels.. Sci Rep, 3 3103. https://doi.org/10.1038/srep03103
Abstract
The problem of transport through nanochannels is one of the major questions in cell biology, with a wide range of applications. In this paper we discuss the process of spontaneous translocation of molecules (Brownian particles) by ratcheted diffusion: a problem relevant for protein translocation along bacterial flagella or injectosome complex, or DNA translocation by bacteriophages. We use molecular dynamics simulations and statistical theory to identify two regimes of transport: at low rate of particle injection into the channel the process is controlled by the individual diffusion towards the open end (the first passage problem), while at a higher rate of injection the crowded regime sets in. In this regime the particle density in the channel reaches a constant saturation level and the resistance force increases substantially, due to the osmotic pressure build-up. To achieve a steady-state transport, the apparatus that injects new particles into a crowded channel has to operate with an increasing power consumption, proportional to the length of the channel and the required rate of transport. The analysis of resistance force, and accordingly--the power required to inject the particles into a crowded channel to overcome its clogging, is also relevant for many microfluidics applications.
Sponsorship
Engineering and Physical Sciences Research Council (EP/F032773/1)
Identifiers
External DOI: https://doi.org/10.1038/srep03103
This record's URL: https://www.repository.cam.ac.uk/handle/1810/329923
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Licence URL: https://creativecommons.org/licenses/by-nc-nd/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.