Show simple item record

dc.contributor.authorBarile, Melania
dc.contributor.authorImaz-Rosshandler, Ivan
dc.contributor.authorInzani, Isabella
dc.contributor.authorGhazanfar, Shila
dc.contributor.authorNichols, Jennifer
dc.contributor.authorMarioni, John C.
dc.contributor.authorGuibentif, Carolina
dc.contributor.authorGöttgens, Berthold
dc.date.accessioned2021-10-28T15:27:15Z
dc.date.available2021-10-28T15:27:15Z
dc.date.issued2021-07-05
dc.date.submitted2021-03-08
dc.identifier.others13059-021-02414-y
dc.identifier.other2414
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/330004
dc.description.abstractAbstract: Background: Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. Results: Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. Conclusions: By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.
dc.languageen
dc.publisherBioMed Central
dc.subjectResearch
dc.subjectRNA velocity
dc.subjectGastrulation
dc.subjectErythropoiesis
dc.subjectGata1
dc.titleCoordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation
dc.typeArticle
dc.date.updated2021-10-28T15:27:14Z
prism.issueIdentifier1
prism.publicationNameGenome Biology
prism.volume22
dc.identifier.doi10.17863/CAM.77448
dcterms.dateAccepted2021-06-21
rioxxterms.versionofrecord10.1186/s13059-021-02414-y
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidGöttgens, Berthold [0000-0001-6302-5705]
dc.identifier.eissn1474-760X
pubs.funder-project-idWellcome Trust (105031/D/14/Z, 097922/Z/11/Z, 206328/Z/17/Z)
pubs.funder-project-idVetenskapsrådet (2017-06278)
pubs.funder-project-idRoyal Society (GB) (NIF\R1\181950)
pubs.funder-project-idBlood Cancer UK (GB) (18002)
pubs.funder-project-idMedical Research Council (MR/M008975/1, MR/S036113/1)
pubs.funder-project-idBritish Heart Foundation (FS/18/56/35177)


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record