An Experimental and Theoretical Determination of Oscillatory Shear-Induced Crystallization Processes in Viscoelastic Photonic Crystal Media.
View / Open Files
Publication Date
2021-09-14ISSN
1996-1944
Language
eng
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Finlayson, C. E., Rosetta, G., & Baumberg, J. J. (2021). An Experimental and Theoretical Determination of Oscillatory Shear-Induced Crystallization Processes in Viscoelastic Photonic Crystal Media.. https://doi.org/10.3390/ma14185298
Abstract
A study is presented of the oscillatory shear-ordering dynamics of viscoelastic photonic crystal media, using an optical shear cell. The hard-sphere/"sticky"-shell design of these polymeric composite particles produces athermal, quasi-solid rubbery media, with a characteristic viscoelastic ensemble response to applied shear. Monotonic crystallization processes, as directly measured by the photonic stopband transmission, are tracked as a function of strain amplitude, oscillation frequency, and temperature. A complementary generic spatio-temporal model is developed of crystallization due to shear-dependent interlayer viscosity, giving propagating crystalline fronts with increasing applied strain, and a gradual transition from interparticle disorder to order. The introduction of a competing shear-induced flow degradation process, dependent on the global shear rate, gives solutions with both amplitude and frequency dependence. The extracted crystallization timescales show parametric trends which are in good qualitative agreement with experimental observations.
Keywords
Viscoelasticity, polymers, Photonic Crystals, Composite Materials, Shear-induced Crystallization
Identifiers
PMC8464957, 34576523
External DOI: https://doi.org/10.3390/ma14185298
This record's URL: https://www.repository.cam.ac.uk/handle/1810/330096
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk