An open-source machine learning framework for global analyses of parton distributions
dc.contributor.author | Ball, Richard D. | |
dc.contributor.author | Carrazza, Stefano | |
dc.contributor.author | Cruz-Martinez, Juan | |
dc.contributor.author | Del Debbio, Luigi | |
dc.contributor.author | Forte, Stefano | |
dc.contributor.author | Giani, Tommaso | |
dc.contributor.author | Iranipour, Shayan | |
dc.contributor.author | Kassabov, Zahari | |
dc.contributor.author | Latorre, Jose I. | |
dc.contributor.author | Nocera, Emanuele R. | |
dc.contributor.author | Pearson, Rosalyn L. | |
dc.contributor.author | Rojo, Juan | |
dc.contributor.author | Stegeman, Roy | |
dc.contributor.author | Schwan, Christopher | |
dc.contributor.author | Ubiali, Maria | |
dc.contributor.author | Voisey, Cameron | |
dc.contributor.author | Wilson, Michael | |
dc.date.accessioned | 2021-10-31T16:21:46Z | |
dc.date.available | 2021-10-31T16:21:46Z | |
dc.date.issued | 2021-10-30 | |
dc.date.submitted | 2021-09-17 | |
dc.identifier.issn | 1434-6044 | |
dc.identifier.other | s10052-021-09747-9 | |
dc.identifier.other | 9747 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/330122 | |
dc.description.abstract | Abstract: We present the software framework underlying the NNPDF4.0 global determination of parton distribution functions (PDFs). The code is released under an open source licence and is accompanied by extensive documentation and examples. The code base is composed by a PDF fitting package, tools to handle experimental data and to efficiently compare it to theoretical predictions, and a versatile analysis framework. In addition to ensuring the reproducibility of the NNPDF4.0 (and subsequent) determination, the public release of the NNPDF fitting framework enables a number of phenomenological applications and the production of PDF fits under user-defined data and theory assumptions. | |
dc.language | en | |
dc.publisher | Springer Berlin Heidelberg | |
dc.subject | Special Article - Tools for Experiment and Theory | |
dc.title | An open-source machine learning framework for global analyses of parton distributions | |
dc.type | Article | |
dc.date.updated | 2021-10-31T16:21:46Z | |
prism.issueIdentifier | 10 | |
prism.publicationName | The European Physical Journal C | |
prism.volume | 81 | |
dc.identifier.doi | 10.17863/CAM.77567 | |
dcterms.dateAccepted | 2021-10-10 | |
rioxxterms.versionofrecord | 10.1140/epjc/s10052-021-09747-9 | |
rioxxterms.version | VoR | |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.identifier.eissn | 1434-6052 | |
pubs.funder-project-id | Science and Technology Facilities Council (ST/L000385/1, ST/P000630/1.) | |
pubs.funder-project-id | Science and Technology Facilities Council (ST/R504671/1, T/R504737/1) | |
pubs.funder-project-id | Scottish Funding Council (H14027) | |
pubs.funder-project-id | Marie Sklodowska-Curie Actions (752748) | |
pubs.funder-project-id | H2020 European Research Council (740006, 950246) | |
pubs.funder-project-id | H2020 European Research Council (NNLOforLHC2) | |
pubs.funder-project-id | Royal Society (DH150088, RGF/EA/180148) | |
dc.identifier.arxiv | 2109.02671 |
Files in this item
This item appears in the following Collection(s)
-
Jisc Publications Router
This collection holds Cambridge publications received from the Jisc Publications Router