Show simple item record

dc.contributor.authorKuscu, Murat
dc.contributor.authorRamezani, Hamideh
dc.contributor.authorDinc, Ergin
dc.contributor.authorAkhavan, Shahab
dc.contributor.authorAkan, Ozgur B
dc.date.accessioned2021-11-06T00:31:19Z
dc.date.available2021-11-06T00:31:19Z
dc.date.issued2021-10-01
dc.identifier.issn2045-2322
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/330374
dc.description.abstractBio-inspired molecular communications (MC), where molecules are used to transfer information, is the most promising technique to realise the Internet of Nano Things (IoNT), thanks to its inherent biocompatibility, energy-efficiency, and reliability in physiologically-relevant environments. Despite a substantial body of theoretical work concerning MC, the lack of practical micro/nanoscale MC devices and MC testbeds has led researchers to make overly simplifying assumptions about the implications of the channel conditions and the physical architectures of the practical transceivers in developing theoretical models and devising communication methods for MC. On the other hand, MC imposes unique challenges resulting from the highly complex, nonlinear, time-varying channel properties that cannot be always tackled by conventional information and communication tools and technologies (ICT). As a result, the reliability of the existing MC methods, which are mostly adopted from electromagnetic communications and not validated with practical testbeds, is highly questionable. As the first step to remove this discrepancy, in this study, we report on the fabrication of a nanoscale MC receiver based on graphene field-effect transistor biosensors. We perform its ICT characterisation in a custom-designed microfluidic MC system with the information encoded into the concentration of single-stranded DNA molecules. This experimental platform is the first practical implementation of a micro/nanoscale MC system with nanoscale MC receivers, and can serve as a testbed for developing realistic MC methods and IoNT applications.
dc.description.sponsorshipTis work was supported in part by the ERC (Project MINERVA, ERC-2013-CoG #616922) and by the AXA Research Fund (AXA Chair for Internet of Everything at Koc University).
dc.languageeng
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFabrication and microfluidic analysis of graphene-based molecular communication receiver for Internet of Nano Things (IoNT).
dc.typeArticle
prism.endingPage19600
prism.issueIdentifier1
prism.publicationNameScientific Reports
prism.startingPage19600
prism.volume11
dc.identifier.doi10.17863/CAM.77817
dcterms.dateAccepted2021-08-17
rioxxterms.versionofrecord10.1038/s41598-021-98609-1
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2021-08-17
dc.contributor.orcidRamezani, Hamideh [0000-0003-3813-5077]
dc.contributor.orcidAkan, Ozgur [0000-0003-2523-3858]
dc.identifier.eissn2045-2322
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEuropean Research Council (616922)
cam.issuedOnline2021-10-01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International