Show simple item record

dc.contributor.authorTakla, Michael
dc.contributor.authorEdling, Charlotte E
dc.contributor.authorZhang, Kevin
dc.contributor.authorSaadeh, Khalil
dc.contributor.authorTse, Gary
dc.contributor.authorSalvage, Samantha
dc.contributor.authorHuang, Christopher
dc.contributor.authorJeevaratnam, Kamalan
dc.date.accessioned2021-11-06T00:31:43Z
dc.date.available2021-11-06T00:31:43Z
dc.date.issued2021-10
dc.identifier.issn2051-817X
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/330382
dc.description.abstractThe Scn5a gene encodes the major pore-forming Nav 1.5 (α) subunit, of the voltage-gated Na+ channel in cardiomyocytes. The key role of Nav 1.5 in action potential initiation and propagation in both atria and ventricles predisposes organisms lacking Scn5a or carrying Scn5a mutations to cardiac arrhythmogenesis. Loss-of-function Nav 1.5 genetic abnormalities account for many cases of the human arrhythmic disorder Brugada syndrome (BrS) and related conduction disorders. A murine model with a heterozygous Scn5a deletion recapitulates many electrophysiological phenotypes of BrS. This study examines the relationships between its Scn5a+/- genotype, resulting transcriptional changes, and the consequent phenotypic presentations of BrS. Of 62 selected protein-coding genes related to cardiomyocyte electrophysiological or homeostatic function, concentrations of mRNA transcribed from 15 differed significantly from wild type (WT). Despite halving apparent ventricular Scn5a transcription heterozygous deletion did not significantly downregulate its atrial expression, raising possibilities of atria-specific feedback mechanisms. Most of the remaining 14 genes whose expression differed significantly between WT and Scn5a+/- animals involved Ca2+ homeostasis specifically in atrial tissue, with no overlap with any ventricular changes. All statistically significant changes in expression were upregulations in the atria and downregulations in the ventricles. This investigation demonstrates the value of future experiments exploring for and clarifying links between transcriptional control of Scn5a and of genes whose protein products coordinate Ca2+ regulation and examining their possible roles in BrS.
dc.languageeng
dc.publisherWiley
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBrugada syndrome
dc.subjectarrhythmia
dc.subjectmechanisms
dc.subjectsodium channel
dc.subjecttranscription
dc.titleTranscriptional profiles of genes related to electrophysiological function in Scn5a+/- murine hearts.
dc.typeArticle
prism.endingPagee15043
prism.issueIdentifier19
prism.publicationNamePhysiological Reports
prism.startingPagee15043
prism.volume9
dc.identifier.doi10.17863/CAM.77825
dcterms.dateAccepted2021-08-13
rioxxterms.versionofrecord10.14814/phy2.15043
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2021-08-13
dc.contributor.orcidSalvage, Samantha [0000-0002-5793-2349]
dc.contributor.orcidHuang, Christopher [0000-0001-9553-6112]
dc.identifier.eissn2051-817X
rioxxterms.typeJournal Article/Review
pubs.funder-project-idMedical Research Council (MR/M001288/1)
cam.issuedOnline2021-10-07


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International