Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure.
Publication Date
2021-11-24Journal Title
Nano Lett
ISSN
1530-6984
Publisher
American Chemical Society (ACS)
Language
eng
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Morzy, D., Joshi, H., Sandler, S. E., Aksimentiev, A., & Keyser, U. F. (2021). Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure.. Nano Lett https://doi.org/10.1021/acs.nanolett.1c03791
Abstract
DNA nanotechnology has emerged as a promising method for designing spontaneously inserting and fully controllable synthetic ion channels. However, both insertion efficiency and stability of existing DNA-based membrane channels leave much room for improvement. Here, we demonstrate an approach to overcoming the unfavorable DNA-lipid interactions that hinder the formation of a stable transmembrane pore. Our all-atom MD simulations and experiments show that the insertion-driving cholesterol modifications can cause fraying of terminal base pairs of nicked DNA constructs, distorting them when embedded in a lipid bilayer. Importantly, we show that DNA nanostructures with no backbone discontinuities form more stable conductive pores and insert into membranes with a higher efficiency than the equivalent nicked constructs. Moreover, lack of nicks allows design and maintenance of membrane-spanning helices in a tilted orientation within the lipid bilayer. Thus, reducing the conformational degrees of freedom of the DNA nanostructures enables better control over their function as synthetic ion channels.
Keywords
DNA structures, lipid membranes, nicks, protein-mimicking, synthetic ion channel, tilt, DNA, Ion Channels, Lipid Bilayers, Nanostructures, Nanotechnology
Sponsorship
Winton Programme for the Physics of Sustainability
EPSRC Scholarship (1948702).
EPSRC Cambridge NanoDTC (EP/S022953/1)
ERC consolidator grant (DesignerPores 647144)
National Science Foundation USA (DMR-1827346)
XSEDE allocation grant (MCA05S028)
Leadership Resource Allocation (MCB20012)
Funder references
European Research Council (647144)
EPSRC (1948702)
Engineering and Physical Sciences Research Council (EP/S022953/1)
Identifiers
External DOI: https://doi.org/10.1021/acs.nanolett.1c03791
This record's URL: https://www.repository.cam.ac.uk/handle/1810/330458
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk