'RNA modulation of transport properties and stability in phase-separated condensates.
Authors
Tejedor, Andrés R
Garaizar, Adiran
Ramírez, Jorge
Espinosa, Jorge R
Publication Date
2021-12-07Journal Title
Biophys J
ISSN
0006-3495
Publisher
Elsevier BV
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Tejedor, A. R., Garaizar, A., Ramírez, J., & Espinosa, J. R. (2021). 'RNA modulation of transport properties and stability in phase-separated condensates.. Biophys J https://doi.org/10.1016/j.bpj.2021.11.003
Abstract
One of the key mechanisms employed by cells to control their spatiotemporal organization is the formation and dissolution of phase-separated condensates. The balance between condensate assembly and disassembly can be critically regulated by the presence of RNA. In this work, we use a chemically-accurate sequence-dependent coarse-grained model for proteins and RNA to unravel the impact of RNA in modulating the transport properties and stability of biomolecular condensates. We explore the phase behavior of several RNA-binding proteins such as FUS, hnRNPA1, and TDP-43 proteins along with that of their corresponding prion-like domains and RNA recognition motifs from absence to moderately high RNA concentration. By characterizing the phase diagram, key molecular interactions, surface tension, and transport properties of the condensates, we report a dual RNA-induced behavior: on the one hand, RNA enhances phase separation at low concentration as long as the RNA radius of gyration is comparable to that of the proteins, whereas at high concentration, it inhibits the ability of proteins to self-assemble independently of its length. On the other hand, along with the stability modulation, the viscosity of the condensates can be considerably reduced at high RNA concentration as long as the length of the RNA chains is shorter than that of the proteins. Conversely, long RNA strands increase viscosity even at high concentration, but barely modify protein self-diffusion which mainly depends on RNA concentration and on the effect RNA has on droplet density. On the whole, our work rationalizes the different routes by which RNA can regulate phase separation and condensate dynamics, as well as the subsequent aberrant rigidification implicated in the emergence of various neuropathologies and age-related diseases.
Sponsorship
EPSRC
Funder references
Engineering and Physical Sciences Research Council (EP/N509620/1)
Engineering and Physical Sciences Research Council (EP/P020259/1)
Identifiers
External DOI: https://doi.org/10.1016/j.bpj.2021.11.003
This record's URL: https://www.repository.cam.ac.uk/handle/1810/330465
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.