Quantitative studies and Hydrodynamical limits for interacting particle systems
View / Open Files
Authors
Advisors
Mouhot, Clément
Date
2021-06Awarding Institution
University of Cambridge
Qualification
Doctor of Philosophy (PhD)
Type
Thesis
Metadata
Show full item recordCitation
Menegaki, A. (2021). Quantitative studies and Hydrodynamical limits for interacting particle systems (Doctoral thesis). https://doi.org/10.17863/CAM.77980
Abstract
The main results of my work contribute to the mathematical study of microscopic non-equilibrium systems that were first introduced in order to derive macroscopic physical laws such as Fourier's law. In particular the main objective is to determine the scaling of the spectral gap, i.e. the relaxation rate, in terms of the number of the particles for a paradigmatic model describing heat transport, the chain of oscillators. The mathematical study of this model started at the end of $90$s and it is challenging due to the degeneracy of the dynamics as the noise is not assumed to act to all the degrees of freedom, leading to lack of ellipticity and coercivity. We give bounds on the spectral gap for weak nonlinearities of the chain, i.e. perturbations around linear homogeneous chains and also a complete answer for the linear, homogeneous and disordered, chain of oscillators as well as $d$-dimensional grids of oscillators. The methods range from hypocoercivity inspired techniques, in the sense of Villani, to spectral analysis of discrete Schrödinger operators. Moreover we study heat conduction in gases addressing, with both analytic and probabilistic techniques, the question of the existence, and properties, of a non-equilibrium steady state for the nonlinear BGK model, introduced by Bhatnagar, Gross and Krook, with diffusive boundary conditions. The case that we address concerns large boundary temperatures away from the equilibrium case.
Furthermore, besides non-equilibrium phenomena in many particle systems, this thesis deals with the question of deriving nonlinear diffusion equations from microscopic stochastic processes. We present a new, quantitative, unified method to show that the particle densities of one-dimensional processes on a periodic lattice, including the zero-range and simple exclusion jump processes as well as diffusion processes of Ginzburg-Landau type, converge to the solution of a nonlinear diffusion equation with an explicit, uniform in time, convergence rate. We discuss how we can extend the result to all the dimensions. Finally a study of the scaling of the spectral gap for all the mean field $\mathcal{O}(n)$ models of Ginzburg-Landau type using semiclassical tools, is included in this thesis. This concerns the spectral gap as a function of the number of particles, spins, for the dynamics below and at the critical temperature, with and without an external magnetic field.
Keywords
non-equilibrium statistical mechanics, chain of oscillators, spectral gap, hypoellipticity, hypocoercivity, non-equilibrium steady states, kinetic equations, quantitative hydrodynamical limits, zero-range process, Ginzburg-Landau process
Sponsorship
EPSRC
Funder references
EPSRC (1946599)
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.77980
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk