Extent of myosin penetration within the actin cortex regulates cell surface mechanics
Authors
Truong Quang, Binh An
Peters, Ruby
Cassani, Davide A. D.
Chugh, Priyamvada
Agnew, Meghan
Publication Date
2021-11-11Journal Title
Nature Communications
Publisher
Nature Publishing Group UK
Volume
12
Issue
1
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Truong Quang, B. A., Peters, R., Cassani, D. A. D., Chugh, P., Clark, A. G., Agnew, M., Charras, G., & et al. (2021). Extent of myosin penetration within the actin cortex regulates cell surface mechanics. Nature Communications, 12 (1) https://doi.org/10.1038/s41467-021-26611-2
Abstract
Abstract: In animal cells, shape is mostly determined by the actomyosin cortex, a thin cytoskeletal network underlying the plasma membrane. Myosin motors generate tension in the cortex, and tension gradients result in cellular deformations. As such, many cell morphogenesis studies have focused on the mechanisms controlling myosin activity and recruitment to the cortex. Here, we demonstrate using super-resolution microscopy that myosin does not always overlap with actin at the cortex, but remains restricted towards the cytoplasm in cells with low cortex tension. We propose that this restricted penetration results from steric hindrance, as myosin minifilaments are considerably larger than the cortical actin meshsize. We identify myosin activity and actin network architecture as key regulators of myosin penetration into the cortex, and show that increasing myosin penetration increases cortical tension. Our study reveals that the spatial coordination of myosin and actin at the cortex regulates cell surface mechanics, and unveils an important mechanism whereby myosin size controls its action by limiting minifilament penetration into the cortical actin network. More generally, our findings suggest that protein size could regulate function in dense cytoskeletal structures.
Keywords
Article, /631/57, /631/80/2373/2238, /631/80/128/1276, /631/80/128/1675, /9, /14, /14/28, /13, /147/3, article
Sponsorship
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) (BB/R000042)
Human Frontier Science Program (HFSP) (RGY 66/2013, RGY 66/2013)
RCUK | Medical Research Council (MRC) (MC_UU_12018/5)
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) (820188-NanoMechShape)
Identifiers
s41467-021-26611-2, 26611
External DOI: https://doi.org/10.1038/s41467-021-26611-2
This record's URL: https://www.repository.cam.ac.uk/handle/1810/330608
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk