Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk
View / Open Files
Authors
Yang, Xin
Aben, Katja KH
Adank, Muriel A
Andrulis, Irene L
Antonenkova, Natalia N
Aravantinos, Gerasimos
Arun, Banu K
Balmaña, Judith
Barrowdale, Daniel
Beckmann, Matthias W
Beeghly-Fadiel, Alicia
Benitez, Javier
Bermisheva, Marina
Bernardini, Marcus Q
Bjorge, Line
Black, Amanda
Bogdanova, Natalia V
Bonanni, Bernardo
Borg, Ake
Budzilowska, Agnieszka
Butzow, Ralf
Buys, Saundra S
Cai, Hui
Caligo, Maria A
Cannioto, Rikki
Cassingham, Hayley
Chang-Claude, Jenny
Chanock, Stephen J
Chiew, Yoke-Eng
Colanna, Sarah
Cook, Linda S
Couch, Fergus J
Daly, Mary B
Dao, Fanny
Davies, Eleanor
de la Hoya, Miguel
Putter, Robin de
Dennis, Joe
DePersia, Allison
Ding, Yuan Chun
Doherty, Jennifer A
Domchek, Susan M
Dörk, Thilo
Dürst, Matthias
Engel, Christoph
Evans, D Gareth
Fasching, Peter A
Flanagan, James M
Foretova, Lenka
Fortner, Renée T
Friedman, Eitan
Garber, Judy
Gensini, Francesca
Godwin, Andrew K
Goodman, Marc T
Gronwald, Jacek
Hahnen, Eric
Haiman, Christopher A
Håkansson, Niclas
Hamann, Ute
Hansen, Thomas VO
Harris, Holly R
Hildebrandt, Michelle AT
Høgdall, Estrid
Høgdall, Claus K
Hopper, John L
Huang, Ruea-Yea
Huff, Chad
Hulick, Peter J
Huntsman, David G
Imyanitov, Evgeny N
Jakubowska, Anna
James, Paul A
Jensen, Allan
Johannsson, Oskar Th
Jones, Michael E
Karnezis, Anthony
Kelemen, Linda E
Kiemeney, Lambertus A
Kim, Byoung-Gie
Komenaka, Ian
Kupryjanczyk, Jolanta
Kurian, Allison W
Kwong, Ava
Lambrechts, Diether
Larson, Melissa C
Lazaro, Conxi
Le, Nhu D
Leslie, Goska
Lester, Jenny
Lesueur, Fabienne
Levine, Douglas A
Li, Lian
Li, Jingmei
Loud, Jennifer T
Lu, Karen H
Lubiński, Jan
Machackova, Eva
Mai, Phuong L
Marks, Jeffrey R
Matsuno, Rayna Kim
May, Taymaa
McGuffog, Lesley
McLaughlin, John R
McNeish, Iain A
Mebirouk, Noura
Milne, Roger L
Minlikeeva, Albina
Modugno, Francesmary
Montagna, Marco
Moysich, Kirsten B
Munro, Elizabeth
Nathanson, Katherine L
Neuhausen, Susan L
Nevanlinna, Heli
Yie, Joanne Ngeow Yuen
Nielsen, Henriette Roed
Nielsen, Finn C
Odunsi, Kunle
Offit, Kenneth
Olah, Edith
Olsson, Håkan
Osorio, Ana
Pathak, Harsha
Pedersen, Inge Sokilde
Peixoto, Ana
Pejovic, Tanja
Perez-Segura, Pedro
Peshkin, Beth
Piskorz, Anna
Prokofyeva, Darya
Rantala, Johanna
Riggan, Marjorie J
Risch, Harvey A
Rodriguez-Antona, Cristina
Ross, Eric
Rossing, Mary Anne
Runnebaum, Ingo
Sandler, Dale P
Santamariña, Marta
Soucy, Penny
Schmutzler, Rita K
Setiawan, V Wendy
Shan, Kang
Sieh, Weiva
Simard, Jacques
Singer, Christian F
Sokolenko, Anna P
Song, Honglin
Southey, Melissa C
Steed, Helen
Stoppa-Lyonnet, Dominique
Sutphen, Rebecca
Tan, Yen Yen
Teixeira, Manuel R
Teo, Soo Hwang
Terry, Kathryn L
Terry, Mary Beth
Thomassen, Mads
Thompson, Pamela J
Vestrheim Thomsen, Liv Cecilie
Thull, Darcy L
Tischkowitz, Marc
Titus, Linda
Torres, Diana
Trabert, Britton
Travis, Ruth
Tung, Nadine
Tworoger, Shelley S
Valen, Ellen
van Altena, Anne M
van der Hout, Annemieke H
Van Nieuwenhuysen, Els
van Rensburg, Elizabeth J
Vega, Ana
Edwards, Digna Velez
Vierkant, Robert A
Wang, Frances
Wappenschmidt, Barbara
Wentzensen, Nicolas
White, Emily
Whittemore, Alice S
Woo, Yin-Ling
Wu, Anna H
Yan, Li
Zavaglia, Katia M
Zheng, Wei
Ziogas, Argyrios
Zorn, Kristin K
Lawrenson, Kate
DeFazio, Anna
Sellers, Thomas A
Pearce, Celeste L
Monteiro, Alvaro N
Cunningham, Julie
Goode, Ellen L
Schildkraut, Joellen M
Berchuck, Andrew
Gayther, Simon A
Antoniou, Antonis C
Pharoah, Paul DP
Journal Title
European Journal of Human Genetics
ISSN
1018-4813
Publisher
Cold Spring Harbor Laboratory
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Dareng, E. O., Tyrer, J., Barnes, D., Jones, M. R., Yang, X., Aben, K. K., Adank, M. A., et al. (2022). Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk. European Journal of Human Genetics https://doi.org/10.1101/2020.11.30.20219220
Abstract
<jats:title>Abstract</jats:title><jats:p>Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally-efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestry; 7,669 women of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 <jats:italic>BRCA1</jats:italic> and 12,337 <jats:italic>BRCA2</jats:italic> pathogenic variant carriers of European ancestry. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in <jats:italic>BRCA1</jats:italic> pathogenic variant carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in <jats:italic>BRCA2</jats:italic> pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.</jats:p>
Identifiers
External DOI: https://doi.org/10.1101/2020.11.30.20219220
This record's URL: https://www.repository.cam.ac.uk/handle/1810/330723
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk