Show simple item record

dc.contributor.authorGriffiths, Jack
dc.contributor.authorFöldes, Tamás
dc.contributor.authorde Nijs, Bart
dc.contributor.authorChikkaraddy, Rohit
dc.contributor.authorWright, Demelza
dc.contributor.authorDeacon, William M.
dc.contributor.authorBerta, Dénes
dc.contributor.authorReadman, Charlie
dc.contributor.authorGrys, David-Benjamin
dc.contributor.authorRosta, Edina
dc.contributor.authorBaumberg, Jeremy J.
dc.date.accessioned2021-11-22T14:48:27Z
dc.date.available2021-11-22T14:48:27Z
dc.date.issued2021-11-19
dc.date.submitted2021-03-04
dc.identifier.others41467-021-26898-1
dc.identifier.other26898
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/330919
dc.description.abstractAbstract: Metal/organic-molecule interactions underpin many key chemistries but occur on sub-nm scales where nanoscale visualisation techniques tend to average over heterogeneous distributions. Single molecule imaging techniques at the atomic scale have found it challenging to track chemical behaviour under ambient conditions. Surface-enhanced Raman spectroscopy can optically monitor the vibrations of single molecules but understanding is limited by the complexity of spectra and mismatch between theory and experiment. We demonstrate that spectra from an optically generated metallic adatom near a molecule of interest can be inverted into dynamic sub-Å metal-molecule interactions using a comprehensive model, revealing anomalous diffusion of a single atom. Transient metal-organic coordination bonds chemically perturb molecular functional groups > 10 bonds away. With continuous improvements in computational methods for modelling large and complex molecular systems, this technique will become increasingly applicable to accurately tracking more complex chemistries.
dc.languageen
dc.publisherNature Publishing Group UK
dc.subjectArticle
dc.subject/639/638/542/971
dc.subject/639/925/357/404
dc.subject/639/624/400/1021
dc.subject/639/638/440/527/1821
dc.subject/140/133
dc.subject/119/118
dc.subjectarticle
dc.titleResolving sub-angstrom ambient motion through reconstruction from vibrational spectra
dc.typeArticle
dc.date.updated2021-11-22T14:48:26Z
prism.issueIdentifier1
prism.publicationNameNature Communications
prism.volume12
dc.identifier.doi10.17863/CAM.78362
dcterms.dateAccepted2021-10-27
rioxxterms.versionofrecord10.1038/s41467-021-26898-1
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidde Nijs, Bart [0000-0002-8234-723X]
dc.contributor.orcidChikkaraddy, Rohit [0000-0002-3840-4188]
dc.contributor.orcidBaumberg, Jeremy J. [0000-0002-9606-9488]
dc.identifier.eissn2041-1723
pubs.funder-project-idRCUK | Engineering and Physical Sciences Research Council (EPSRC) (EP/R013012/1, EP/L027151/1, EP/G060649/1, EP/G037221/1)
pubs.funder-project-idEC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) (757850, 883703)


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record