Show simple item record

dc.contributor.authorRocha, LAM
dc.contributor.authorGutiérrez-Ariza, C
dc.contributor.authorPimentel, C
dc.contributor.authorSánchez-Almazo, I
dc.contributor.authorSainz-Díaz, CI
dc.contributor.authorCardoso, Silvana
dc.contributor.authorCartwright, JHE
dc.date.accessioned2021-11-22T14:48:38Z
dc.date.available2021-11-22T14:48:38Z
dc.date.issued2021-11
dc.date.submitted2021-02-17
dc.identifier.citationGeochemistry, Geophysics, Geosystems, volume 22, issue 11, page e2021GC009724
dc.identifier.issn1525-2027
dc.identifier.otherggge22663
dc.identifier.other2021gc009724
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/330921
dc.descriptionFunder: Spanish Marine Science and Technology Program
dc.description.abstractAbstract: Methane‐rich water moves through conduits beneath the seafloor whose surfaces are formed through precipitation reactions. To understand how such submarine fluid conduit and venting systems form and grow, we develop a detailed mathematical model for this reaction‐advection system and we quantify the evolution of an ensemble of similar filaments. We show that this growth can be described by a superposition of advection and dispersion. We analyze analog laboratory experiments of chemical‐garden type to study the growth of a single filament undergoing a precipitation reaction with the surrounding environment. We apply these findings to geological fluid conduit and venting systems, showing that their irregular trajectories can lead to very effective spreading within the surrounding seabed, thus enhancing contact and exchanges of chemicals between the conduit and external fluids. We discuss how this methane venting leads to the formation of marine authigenic carbonate rocks, and for confirmation, we analyze two field samples from the Gulf of Cadiz for composition and mineralogy of the precipitates. We note the implications of this work for hydrate melting and methane escape from the seabed.
dc.languageen
dc.publisherAmerican Geophysical Union (AGU)
dc.subjectATMOSPHERIC COMPOSITION AND STRUCTURE
dc.subjectAir/sea constituent fluxes
dc.subjectVolcanic effects
dc.subjectBIOGEOSCIENCES
dc.subjectClimate dynamics
dc.subjectModeling
dc.subjectCOMPUTATIONAL GEOPHYSICS
dc.subjectNumerical solutions
dc.subjectCRYOSPHERE
dc.subjectClathrate
dc.subjectDynamics
dc.subjectAvalanches
dc.subjectMass balance
dc.subjectGEODESY AND GRAVITY
dc.subjectOcean monitoring with geodetic techniques
dc.subjectOcean/Earth/atmosphere/hydrosphere/cryosphere interactions
dc.subjectGlobal change from geodesy
dc.subjectGLOBAL CHANGE
dc.subjectAbrupt/rapid climate change
dc.subjectClimate variability
dc.subjectEarth system modeling
dc.subjectImpacts of global change
dc.subjectLand/atmosphere interactions
dc.subjectOceans
dc.subjectRegional climate change
dc.subjectSea level change
dc.subjectSolid Earth
dc.subjectWater cycles
dc.subjectHYDROLOGY
dc.subjectClimate impacts
dc.subjectHydrological cycles and budgets
dc.subjectINFORMATICS
dc.subjectMARINE GEOLOGY AND GEOPHYSICS
dc.subjectMarine hydrogeology
dc.subjectSeafloor morphology, geology, and geophysics
dc.subjectGravity and isostasy
dc.subjectATMOSPHERIC PROCESSES
dc.subjectClimate change and variability
dc.subjectClimatology
dc.subjectGeneral circulation
dc.subjectOcean/atmosphere interactions
dc.subjectRegional modeling
dc.subjectTheoretical modeling
dc.subjectOCEANOGRAPHY: GENERAL
dc.subjectClimate and interannual variability
dc.subjectNumerical modeling
dc.subjectNATURAL HAZARDS
dc.subjectAtmospheric
dc.subjectGeological
dc.subjectOceanic
dc.subjectPhysical modeling
dc.subjectClimate impact
dc.subjectRisk
dc.subjectDisaster risk analysis and assessment
dc.subjectOCEANOGRAPHY: PHYSICAL
dc.subjectAir/sea interactions
dc.subjectDecadal ocean variability
dc.subjectOcean influence of Earth rotation
dc.subjectSea level: variations and mean
dc.subjectSurface waves and tides
dc.subjectTsunamis and storm surges
dc.subjectPALEOCEANOGRAPHY
dc.subjectPOLICY SCIENCES
dc.subjectBenefit‐cost analysis
dc.subjectRADIO SCIENCE
dc.subjectRadio oceanography
dc.subjectSEISMOLOGY
dc.subjectEarthquake ground motions and engineering seismology
dc.subjectVolcano seismology
dc.subjectVOLCANOLOGY
dc.subjectVolcano/climate interactions
dc.subjectAtmospheric effects
dc.subjectVolcano monitoring
dc.subjectEffusive volcanism
dc.subjectMud volcanism
dc.subjectExplosive volcanism
dc.subjectVolcanic hazards and risks
dc.subjectResearch Article
dc.titleFormation and Structures of Horizontal Submarine Fluid Conduit and Venting Systems Associated With Marine Seeps
dc.typeArticle
dc.date.updated2021-11-22T14:48:37Z
prism.publicationNameGeochemistry, Geophysics, Geosystems
dc.identifier.doi10.17863/CAM.78364
dcterms.dateAccepted2021-10-09
rioxxterms.versionofrecord10.1029/2021GC009724
rioxxterms.versionAO
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.contributor.orcidRocha, LAM [0000-0003-2105-9485]
dc.contributor.orcidGutiérrez-Ariza, C [0000-0001-6031-8641]
dc.contributor.orcidPimentel, C [0000-0002-5400-9102]
dc.contributor.orcidSánchez-Almazo, I [0000-0001-6927-9976]
dc.contributor.orcidSainz-Díaz, CI [0000-0001-8612-3826]
dc.contributor.orcidCardoso, Silvana [0000-0003-0417-035X]
dc.contributor.orcidCartwright, JHE [0000-0001-7392-0957]
dc.identifier.eissn1525-2027
pubs.funder-project-idFundação para a Ciência e a Tecnologia (SFRH/BD/130401/2017)
pubs.funder-project-idJuan de la Cierra‐Formación (FJC2018‐035820‐I)
pubs.funder-project-idMINCINN (FIS2016‐77692‐C2‐2‐P, PCIN‐2017‐098)
pubs.funder-project-idCOST (CA17120)
cam.issuedOnline2021-11-19


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record