Static and dynamic strain relaxation associated with the paraelectric-antiferroelectric phase transition in PbZrO<inf>3</inf>
View / Open Files
Authors
Carpenter, MA
Salje, EKH
Costa, MB
Majchrowski, A
Roleder, K
Publication Date
2022Journal Title
Journal of Alloys and Compounds
ISSN
0925-8388
Publisher
Elsevier BV
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Carpenter, M., Salje, E., Costa, M., Majchrowski, A., & Roleder, K. (2022). Static and dynamic strain relaxation associated with the paraelectric-antiferroelectric phase transition in PbZrO<inf>3</inf>. Journal of Alloys and Compounds https://doi.org/10.1016/j.jallcom.2021.162804
Abstract
Order parameter coupling associated with the first order, improper ferroelastic (Pm3 ̅m - Pbam) transition at ~510 K in PbZrO3 has been analysed from the perspective of strain and elasticity. Formal treatment of spontaneous strains using lattice parameter data from the literature reveals typical coupling with the order parameter for octahedral tilting, QR, and stronger coupling with the order parameter for antiferroelectric displacements, Q. These indicate that coupling between the two order parameters via common strains is not only biquadratic, QR2Q2, but may also have contributions from a higher order term, QR2Q4. Variations of elastic and anelastic properties obtained by resonant ultrasound spectroscopy (RUS) at frequencies in the vicinity of 1 MHz show softening as the transition point was approached from above, discontinuous stiffening at the transition point and a pattern of further stiffening in the stability of the orthorhombic structure. Below the transition point, the pattern of stiffening resembles the evolution of QR2 and Q2, as is typical of coupling dominated by terms with the form e2Q2, where e is a spontaneous shear strain. The absence of softening due to terms of the form eQ2 implies that the relaxation time for changes in the order parameters in response to an induced shear strain is slower than ~10-6 s. Also in contrast with measurements from the literature made at lower frequencies, no evidence for mobility of ferroelastic domain walls was observed at RUS frequencies. A peak in acoustic loss observed at the transition point and precursor softening in the stability field of the cubic phase are consistent with evidence for local dynamical polar clusters. Apart from some differences in relaxation times, the antiferroelectric transition in PbZrO3 does not appear to be overtly different from ferroelectric transitions such as occur in BaTiO3.
Keywords
Antiferroelectric, Perovskites, Resonant Ultrasound Spectroscopy, Order parameter coupling, Domain walls
Sponsorship
Engineering and Physical Sciences Research Council (EP/I036079/1)
Engineering and Physical Sciences Research Council (EP/P024904/1)
Natural Environment Research Council (NE/F017081/1)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (861046)
Embargo Lift Date
2023-03-31
Identifiers
External DOI: https://doi.org/10.1016/j.jallcom.2021.162804
This record's URL: https://www.repository.cam.ac.uk/handle/1810/331008
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk