Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation.
View / Open Files
Publication Date
2022-01Journal Title
Comput Med Imaging Graph
ISSN
0895-6111
Publisher
Elsevier BV
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Yeung, M., Sala, E., Schönlieb, C., & Rundo, L. (2022). Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation.. Comput Med Imaging Graph https://doi.org/10.1016/j.compmedimag.2021.102026
Abstract
Automatic segmentation methods are an important advancement in medical image analysis. Machine learning techniques, and deep neural networks in particular, are the state-of-the-art for most medical image segmentation tasks. Issues with class imbalance pose a significant challenge in medical datasets, with lesions often occupying a considerably smaller volume relative to the background. Loss functions used in the training of deep learning algorithms differ in their robustness to class imbalance, with direct consequences for model convergence. The most commonly used loss functions for segmentation are based on either the cross entropy loss, Dice loss or a combination of the two. We propose the Unified Focal loss, a new hierarchical framework that generalises Dice and cross entropy-based losses for handling class imbalance. We evaluate our proposed loss function on five publicly available, class imbalanced medical imaging datasets: CVC-ClinicDB, Digital Retinal Images for Vessel Extraction (DRIVE), Breast Ultrasound 2017 (BUS2017), Brain Tumour Segmentation 2020 (BraTS20) and Kidney Tumour Segmentation 2019 (KiTS19). We compare our loss function performance against six Dice or cross entropy-based loss functions, across 2D binary, 3D binary and 3D multiclass segmentation tasks, demonstrating that our proposed loss function is robust to class imbalance and consistently outperforms the other loss functions. Source code is available at: https://github.com/mlyg/unified-focal-loss.
Keywords
Class imbalance, Convolutional neural networks, Loss function, Machine learning, Medical image segmentation, Algorithms, Entropy, Image Processing, Computer-Assisted, Neural Networks, Computer, Retinal Vessels
Sponsorship
This work was partially supported by The Mark Foundation for Cancer Research and Cancer Research UK Cambridge Centre [C9685/A25177],
the CRUK National Cancer Imaging Translational Accelerator (NCITA)
[C42780/A27066] and the Wellcome Trust Innovator Award, UK [215733/Z/19/Z].
Additional support was also provided by the National Institute of Health
Research (NIHR) Cambridge Biomedical Research Centre [BRC-1215-20014]
and the Cambridge Mathematics of Information in Healthcare (CMIH) [funded
by the EPSRC grant EP/T017961/1]. The views expressed are those of the
authors and not necessarily those of the NHS, the NIHR, or the Department
of Health and Social Care.
CBS in addition acknowledges support from the Leverhulme Trust project
on ‘Breaking the non-convexity barrier’, the Philip Leverhulme Prize, the
Royal Society Wolfson Fellowship, the EPSRC grants EP/S026045/1, EP/N014588/1,
European Union Horizon 2020 research and innovation programmes under
the Marie Skodowska-Curie grant agreement No. 777826 NoMADS and No.
691070 CHiPS, the Cantab Capital Institute for the Mathematics of Information and the Alan Turing Institute.
This work was performed using resources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by the University of Cambridge Research Computing Service (www.csd3.cam.ac.uk), provided by
Dell EMC and Intel using Tier-2 funding from the Engineering and Physical
Sciences Research Council (capital grant EP/P020259/1), and DiRAC funding from the Science and Technology Facilities Council (www.dirac.ac.uk).
Funder references
Engineering and Physical Sciences Research Council (EP/N014588/1)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (691070)
Engineering and Physical Sciences Research Council (EP/P020259/1)
Cancer Research UK (C96/A25177)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (777826)
EPSRC (EP/S026045/1)
EPSRC (EP/T017961/1)
National Institute for Health Research (IS-BRC-1215-20014)
Wellcome Trust (215733/Z/19/Z)
Identifiers
External DOI: https://doi.org/10.1016/j.compmedimag.2021.102026
This record's URL: https://www.repository.cam.ac.uk/handle/1810/331262
Rights
Attribution 4.0 International (CC BY)
Licence URL: http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk