How One can Repair Non-integrable Kahan Discretizations. II. A Planar System with Invariant Curves of Degree 6
dc.contributor.author | Schmalian, Misha | |
dc.contributor.author | Suris, Yuri B | |
dc.contributor.author | Tumarkin, Yuriy | |
dc.date.accessioned | 2021-12-15T12:13:37Z | |
dc.date.available | 2021-12-15T12:13:37Z | |
dc.date.issued | 2021-12 | |
dc.date.submitted | 2021-07-07 | |
dc.identifier.citation | Mathematical Physics, Analysis and Geometry, volume 24, issue 4, page 40 | |
dc.identifier.issn | 1385-0172 | |
dc.identifier.other | s11040-021-09413-2 | |
dc.identifier.other | 9413 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/331500 | |
dc.description.abstract | <jats:title>Abstract</jats:title><jats:p>We find a novel one-parameter family of integrable quadratic Cremona maps of the plane preserving a pencil of curves of degree 6 and of genus 1. They turn out to serve as Kahan-type discretizations of a novel family of quadratic vector fields possessing a polynomial integral of degree 6 whose level curves are of genus 1, as well. These vector fields are non-homogeneous generalizations of reduced Nahm systems for magnetic monopoles with icosahedral symmetry, introduced by Hitchin, Manton and Murray. The straightforward Kahan discretization of these novel non-homogeneous systems is non-integrable. However, this drawback is repaired by introducing adjustments of order <jats:inline-formula><jats:alternatives><jats:tex-math>$$O(\epsilon ^2)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>ϵ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> in the coefficients of the discretization, where <jats:inline-formula><jats:alternatives><jats:tex-math>$$\epsilon $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ϵ</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> is the stepsize.</jats:p> | |
dc.language | en | |
dc.publisher | Springer Science and Business Media LLC | |
dc.subject | Article | |
dc.subject | Birational maps | |
dc.subject | Discrete integrable systems | |
dc.subject | Elliptic pencil | |
dc.subject | Rational elliptic surface | |
dc.subject | Integrable discretization | |
dc.title | How One can Repair Non-integrable Kahan Discretizations. II. A Planar System with Invariant Curves of Degree 6 | |
dc.type | Article | |
dc.date.updated | 2021-12-15T12:13:36Z | |
prism.publicationName | Mathematical Physics, Analysis and Geometry | |
dc.identifier.doi | 10.17863/CAM.78954 | |
dcterms.dateAccepted | 2021-10-28 | |
rioxxterms.versionofrecord | 10.1007/s11040-021-09413-2 | |
rioxxterms.version | VoR | |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.contributor.orcid | Suris, Yuri B [0000-0001-9378-0314] | |
dc.identifier.eissn | 1572-9656 | |
pubs.funder-project-id | deutsche forschungsgemeinschaft (TRR 109) | |
cam.issuedOnline | 2021-11-28 |
Files in this item
This item appears in the following Collection(s)
-
Jisc Publications Router
This collection holds Cambridge publications received from the Jisc Publications Router