Show simple item record

dc.contributor.authorMishra, Shambhavi
dc.contributor.authorAhmed, Tanveer
dc.contributor.authorMishra, Vipul
dc.contributor.authorKaur, Manjit
dc.contributor.authorMartinetz, Thomas
dc.contributor.authorJain, Amit Kumar
dc.contributor.authorAlshazly, Hammam
dc.date.accessioned2021-12-19T08:00:12Z
dc.date.available2021-12-19T08:00:12Z
dc.date.issued2021
dc.identifier.citationShambhavi Mishra, Tanveer Ahmed, Vipul Mishra, et al., “Multivariate and Online Prediction of Closing Price Using Kernel Adaptive Filtering,” Computational Intelligence and Neuroscience, vol. 2021, Article ID 6400045, 14 pages, 2021. doi:10.1155/2021/6400045
dc.identifier.issn1687-5265
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/331618
dc.description.abstractThis paper proposes a multivariate and online prediction of stock prices via the paradigm of kernel adaptive filtering (KAF). The prediction of stock prices in traditional classification and regression problems needs independent and batch-oriented nature of training. In this article, we challenge this existing notion of the literature and propose an online kernel adaptive filtering-based approach to predict stock prices. We experiment with ten different KAF algorithms to analyze stocks' performance and show the efficacy of the work presented here. In addition to this, and in contrast to the current literature, we look at granular level data. The experiments are performed with quotes gathered at the window of one minute, five minutes, ten minutes, fifteen minutes, twenty minutes, thirty minutes, one hour, and one day. These time windows represent some of the common windows frequently used by traders. The proposed framework is tested on 50 different stocks making up the Indian stock index: Nifty-50. The experimental results show that online learning and KAF is not only a good option, but practically speaking, they can be deployed in high-frequency trading as well.
dc.publisherHindawi Limited
dc.subjectAlgorithms
dc.subjectInvestments
dc.titleMultivariate and Online Prediction of Closing Price Using Kernel Adaptive Filtering.
dc.typeJournal Article
dc.date.updated2021-12-19T08:00:09Z
dc.description.versionPeer Reviewed
dc.language.rfc3066en
dc.rights.holderCopyright © 2021 Shambhavi Mishra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
prism.publicationNameComput Intell Neurosci
dc.identifier.doi10.17863/CAM.79070
dcterms.dateAccepted2021-11-26
rioxxterms.versionofrecord10.1155/2021/6400045
dc.contributor.orcidMishra, Shambhavi [0000-0002-9593-4820]
dc.contributor.orcidAhmed, Tanveer [0000-0003-0732-3016]
dc.contributor.orcidMishra, Vipul [0000-0002-3649-1388]
dc.contributor.orcidKaur, Manjit [0000-0001-6259-2046]
dc.contributor.orcidMartinetz, Thomas [0000-0002-4539-4475]
dc.contributor.orcidJain, Amit Kumar [0000-0001-7939-7810]
dc.contributor.orcidAlshazly, Hammam [0000-0002-9942-8642]
dc.identifier.eissn1687-5273
cam.issuedOnline2021-12-17


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record