Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission.
Publication Date
2021-12Journal Title
PLoS Comput Biol
ISSN
1553-734X
Publisher
Public Library of Science (PLoS)
Language
English
Type
Article
This Version
NA
Metadata
Show full item recordCitation
Cunniffe, N., Taylor, N. P., Hamelin, F. M., & Jeger, M. J. (2021). Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission.. PLoS Comput Biol https://doi.org/10.1371/journal.pcbi.1009759
Abstract
Many plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector's own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding-as well as potential effects of infection on vector population density-on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics.
Identifiers
External DOI: https://doi.org/10.1371/journal.pcbi.1009759
This record's URL: https://www.repository.cam.ac.uk/handle/1810/331620
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk
The following licence files are associated with this item: