Degenerate topological line surface phonons in quasi-1D double helix crystal SnIP

Change log

jats:titleAbstract</jats:title>jats:pDegenerate points/lines in the band structures of crystals have become a staple of the growing number of topological materials. The bulk-boundary correspondence provides a relation between bulk topology and surface states. While line degeneracies of bulk excitations have been extensively characterised, line degeneracies of surface states are not well understood. We show that SnIP, a quasi-one-dimensional van der Waals material with a double helix crystal structure, exhibits topological nodal rings/lines in both the bulk phonon modes and their corresponding surface states. Using a combination of first-principles calculations, symmetry-based indicator theories and Zak phase analysis, we find that two neighbouring bulk nodal rings form doubly degenerate lines in their drumhead-like surface states, which are protected by the combination of time-reversal symmetry jats:inline-formulajats:alternativesjats:tex-math$${{{\mathcal{T}}}}$$</jats:tex-math><mml:math xmlns:mml=""> mml:miT</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> and glide mirror symmetry jats:inline-formulajats:alternativesjats:tex-math$${\bar{M}}{y}$$</jats:tex-math><mml:math xmlns:mml=""> mml:msub mml:mrow mml:mover mml:mrow mml:miM</mml:mi> </mml:mrow> mml:mo¯</mml:mo> </mml:mover> </mml:mrow> mml:mrow mml:miy</mml:mi> </mml:mrow> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula>. Our results indicate that surface degeneracies can be generically protected by symmetries such as jats:inline-formulajats:alternativesjats:tex-math$${{{\mathcal{T}}}}{\bar{M}}{y}$$</jats:tex-math><mml:math xmlns:mml=""> mml:mrow mml:miT</mml:mi> mml:msub mml:mrow mml:mover mml:mrow mml:miM</mml:mi> </mml:mrow> mml:mo¯</mml:mo> </mml:mover> </mml:mrow> mml:mrow mml:miy</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>, and phonons provide an ideal platform to explore such degeneracies.</jats:p>

Publication Date
Online Publication Date
Acceptance Date
51 Physical Sciences, 5104 Condensed Matter Physics
Journal Title
npj Computational Materials
Journal ISSN
Volume Title
Springer Science and Business Media LLC
Engineering and Physical Sciences Research Council (EP/P020259/1)