Repository logo
 

Thermal WIMPs and the scale of new physics: global fits of Dirac dark matter effective field theories

Published version
Peer-reviewed

Change log

Authors

Athron, P 
Kozar, NA 
Balázs, C 
Bloor, S 

Abstract

We assess the status of a wide class of WIMP dark matter (DM) models in light of the latest experimental results using the global fitting framework GAMBIT. We perform a global analysis of effective field theory (EFT) operators describing the interactions between a gauge-singlet Dirac fermion and the Standard Model quarks, the gluons and the photon. In this bottom-up approach, we simultaneously vary the coefficients of 14 such operators up to dimension 7, along with the DM mass, the scale of new physics and several nuisance parameters. Our likelihood functions include the latest data from Planck, direct and indirect detection experiments, and the LHC. For DM masses below 100 GeV, we find that it is impossible to satisfy all constraints simultaneously while maintaining EFT validity at LHC energies. For new physics scales around 1 TeV, our results are influenced by several small excesses in the LHC data and depend on the prescription that we adopt to ensure EFT validity. Furthermore, we find large regions of viable parameter space where the EFT is valid and the relic density can be reproduced, implying that WIMPs can still account for the DM of the universe while being consistent with the latest data.

Description

Keywords

hep-ph, hep-ph, astro-ph.CO

Journal Title

European Physical Journal C

Conference Name

Journal ISSN

1434-6044
1434-6052

Volume Title

81

Publisher

Springer Science and Business Media LLC
Sponsorship
Australian Research Council (DP180102209)