Show simple item record

dc.contributor.authorBizoń, P
dc.contributor.authorDunajski, M
dc.contributor.authorKahl, M
dc.contributor.authorKowalczyk, M
dc.date.accessioned2022-01-05T16:34:34Z
dc.date.available2022-01-05T16:34:34Z
dc.date.issued2021
dc.date.submitted2020-12-23
dc.identifier.issn0951-7715
dc.identifier.othernonac08eb
dc.identifier.otherac08eb
dc.identifier.othernon-105060.r1
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/332099
dc.description.abstractIn an attempt to understand the soliton resolution conjecture, we consider the Sine-Gordon equation on a spherically symmetric wormhole spacetime. We show that within each topological sector (indexed by a positive integer degree $n$) there exists a unique linearly stable soliton, which we call the $n$-kink. We give numerical evidence that the $n$-kink is a global attractor in the evolution of any smooth, finite energy solutions of degree $n$. When the radius of the wormhole throat $a$ is large enough, the convergence to the $n$-kink is shown to be governed by internal modes that slowly decay due to the resonant transfer of energy to radiation. We compute the exact asymptotics of this relaxation process for the $1$-kink using the Soffer-Weinstein weakly nonlinear perturbation theory.
dc.languageen
dc.publisherIOP Publishing
dc.subjectPaper
dc.subjectsoliton resolution conjecture
dc.subjectasymptotic stability of solitons
dc.subjectnonlinear dispersive equations
dc.subject35C08
dc.titleSine-Gordon on a wormhole
dc.typeArticle
dc.date.updated2022-01-05T16:34:33Z
prism.endingPage5537
prism.issueIdentifier8
prism.publicationNameNonlinearity
prism.startingPage5520
prism.volume34
dc.identifier.doi10.17863/CAM.79546
dcterms.dateAccepted2021-06-07
rioxxterms.versionofrecord10.1088/1361-6544/ac08eb
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/3.0/
dc.identifier.eissn1361-6544
dc.publisher.urlhttp://dx.doi.org/10.1088/1361-6544/ac08eb
pubs.funder-project-idScience and Technology Facilities Council (ST/P000681/1)
pubs.funder-project-idSTFC (ST/T000694/1)
cam.issuedOnline2021-07-02


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record