L<sup>q</sup>-spectra of self-affine measures: Closed forms, counterexamples, and split binomial sums
dc.contributor.author | Fraser, JM | |
dc.contributor.author | Lee, LD | |
dc.contributor.author | Morris, ID | |
dc.contributor.author | Yu, Han | |
dc.date.accessioned | 2022-01-05T16:34:37Z | |
dc.date.available | 2022-01-05T16:34:37Z | |
dc.date.issued | 2021-09 | |
dc.date.submitted | 2020-09-14 | |
dc.identifier.issn | 0951-7715 | |
dc.identifier.other | nonac14a2 | |
dc.identifier.other | ac14a2 | |
dc.identifier.other | non-104844.r1 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/332100 | |
dc.description.abstract | <jats:title>Abstract</jats:title> <jats:p>We study <jats:italic>L</jats:italic> <jats:sup> <jats:italic>q</jats:italic> </jats:sup>-spectra of planar self-affine measures generated by diagonal matrices. We introduce a new technique for constructing and understanding examples based on combinatorial estimates for the exponential growth of certain split binomial sums. Using this approach we disprove a theorem of Falconer and Miao from 2007 and a conjecture of Miao from 2008 concerning a closed form expression for the generalised dimensions of generic self-affine measures. We also answer a question of Fraser from 2016 in the negative by proving that a certain natural closed form expression does not generally give the <jats:italic>L</jats:italic> <jats:sup> <jats:italic>q</jats:italic> </jats:sup>-spectrum. As a further application we provide examples of self-affine measures whose <jats:italic>L</jats:italic> <jats:sup> <jats:italic>q</jats:italic> </jats:sup>-spectra exhibit new types of phase transitions. Finally, we provide new non-trivial closed form bounds for the <jats:italic>L</jats:italic> <jats:sup> <jats:italic>q</jats:italic> </jats:sup>-spectra, which in certain cases yield sharp results.</jats:p> | |
dc.language | en | |
dc.publisher | IOP Publishing | |
dc.subject | Paper | |
dc.subject | fractals | |
dc.subject | self-affine measures | |
dc.subject | L q -spectra | |
dc.subject | 2010: primary: 28A80 | |
dc.subject | 37C45 | |
dc.subject | secondary: 15A18 | |
dc.subject | 26A24 | |
dc.title | L<sup>q</sup>-spectra of self-affine measures: Closed forms, counterexamples, and split binomial sums | |
dc.type | Article | |
dc.date.updated | 2022-01-05T16:34:36Z | |
prism.endingPage | 6357 | |
prism.issueIdentifier | 9 | |
prism.publicationName | Nonlinearity | |
prism.startingPage | 6331 | |
prism.volume | 34 | |
dc.identifier.doi | 10.17863/CAM.79547 | |
dcterms.dateAccepted | 2021-07-14 | |
rioxxterms.versionofrecord | 10.1088/1361-6544/ac14a2 | |
rioxxterms.version | VoR | |
rioxxterms.licenseref.uri | https://creativecommons.org/licenses/by/3.0/ | |
dc.contributor.orcid | Fraser, JM [0000-0002-8066-9120] | |
dc.identifier.eissn | 1361-6544 | |
pubs.funder-project-id | Engineering and Physical Sciences Research Council (EP/N509759/1, EP/R015104/1) | |
pubs.funder-project-id | Leverhulme Trust (RF-2016-500, RPG-2016-194) | |
cam.issuedOnline | 2021-08-02 |
Files in this item
This item appears in the following Collection(s)
-
Jisc Publications Router
This collection holds Cambridge publications received from the Jisc Publications Router