3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients.
dc.contributor.author | Lei, Iek Man | |
dc.contributor.author | Jiang, Chen | |
dc.contributor.author | Lei, Chon Lok | |
dc.contributor.author | de Rijk, Simone Rosalie | |
dc.contributor.author | Tam, Yu Chuen | |
dc.contributor.author | Swords, Chloe | |
dc.contributor.author | Sutcliffe, Michael PF | |
dc.contributor.author | Malliaras, George G | |
dc.contributor.author | Bance, Manohar | |
dc.contributor.author | Huang, Yan Yan Shery | |
dc.date.accessioned | 2022-01-06T12:57:01Z | |
dc.date.available | 2022-01-06T12:57:01Z | |
dc.date.issued | 2021-10-29 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.other | PMC8556326 | |
dc.identifier.other | 34716306 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/332230 | |
dc.description.abstract | Cochlear implants restore hearing in patients with severe to profound deafness by delivering electrical stimuli inside the cochlea. Understanding stimulus current spread, and how it correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear and by the lack of clinically-relevant in vitro, in vivo or in silico models. Here, we present 3D printing-neural network co-modelling for interpreting electric field imaging profiles of cochlear implant patients. With tuneable electro-anatomy, the 3D printed cochleae can replicate clinical scenarios of electric field imaging profiles at the off-stimuli positions. The co-modelling framework demonstrated autonomous and robust predictions of patient profiles or cochlear geometry, unfolded the electro-anatomical factors causing current spread, assisted on-demand printing for implant testing, and inferred patients' in vivo cochlear tissue resistivity (estimated mean = 6.6 kΩcm). We anticipate our framework will facilitate physical modelling and digital twin innovations for neuromodulation implants. | |
dc.language | eng | |
dc.publisher | Springer Science and Business Media LLC | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source | essn: 2041-1723 | |
dc.source | nlmid: 101528555 | |
dc.subject | Cochlea | |
dc.subject | Humans | |
dc.subject | Cochlear Implantation | |
dc.subject | Reproducibility of Results | |
dc.subject | Cochlear Implants | |
dc.subject | Biomimetic Materials | |
dc.subject | X-Ray Microtomography | |
dc.subject | Dielectric Spectroscopy | |
dc.subject | Printing, Three-Dimensional | |
dc.subject | Machine Learning | |
dc.subject | Precision Medicine | |
dc.subject | Neural Networks, Computer | |
dc.title | 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. | |
dc.type | Article | |
dc.date.updated | 2022-01-06T12:57:00Z | |
prism.issueIdentifier | 1 | |
prism.publicationName | Nat Commun | |
prism.volume | 12 | |
dc.identifier.doi | 10.17863/CAM.79676 | |
dcterms.dateAccepted | 2021-10-06 | |
rioxxterms.versionofrecord | 10.1038/s41467-021-26491-6 | |
rioxxterms.version | VoR | |
rioxxterms.licenseref.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.contributor.orcid | Lei, Chon Lok [0000-0003-0904-554X] | |
dc.contributor.orcid | de Rijk, Simone Rosalie [0000-0001-7962-5473] | |
dc.contributor.orcid | Tam, Yu Chuen [0000-0001-6473-4538] | |
dc.contributor.orcid | Swords, Chloe [0000-0002-0431-4491] | |
dc.contributor.orcid | Malliaras, George G [0000-0002-4582-8501] | |
dc.contributor.orcid | Huang, Yan Yan Shery [0000-0003-2619-730X] | |
dc.identifier.eissn | 2041-1723 | |
pubs.funder-project-id | Wellcome Trust (204845/Z/16/Z) | |
pubs.funder-project-id | European Research Council (758865) | |
cam.issuedOnline | 2021-10-29 |
Files in this item
This item appears in the following Collection(s)
-
Jisc Publications Router
This collection holds Cambridge publications received from the Jisc Publications Router