The complexity of biological control systems: An autophagy case study.

Authors
Pavel, Mariana 
Tanasa, Radu 
Park, Sojung 

Loading...
Thumbnail Image
Type
Article
Change log
Abstract

Autophagy and YAP1-WWTR1/TAZ signalling are tightly linked in a complex control system of forward and feedback pathways which determine different cellular outcomes in differing cell types at different time-points after perturbations. Here we extend our previous experimental and modelling approaches to consider two possibilities. First, we have performed additional mathematical modelling to explore how the autophagy-YAP1 crosstalk may be controlled by posttranslational modifications of components of the pathways. Second, since analogous contrasting results have also been reported for autophagy as a regulator of other transduction pathways engaged in tumorigenesis (Wnt/β-catenin, TGF-β/Smads, NF-kB or XIAP/cIAPs), we have considered if such discrepancies may be explicable through situations involving competing pathways and feedback loops in different cell types, analogous to the autophagy-YAP/TAZ situation. Since distinct posttranslational modifications dominate those pathways in distinct cells, these need to be understood to enable appropriate cell type-specific therapeutic strategies for cancers and other diseases.

Publication Date
2022-01-14
Online Publication Date
2022-01-14
Acceptance Date
2022-01-04
Keywords
Journal Title
Bioessays
Journal ISSN
0265-9247
1521-1878
Volume Title
Publisher
Wiley
Sponsorship
We are grateful for funding from the UK Dementia Research Institute (funded by MRC, Alzheimer’s Research UK and the Alzheimer’s Society), a grant of the Romanian Ministry of Research, Innovation and Digitization, CNCS/CCCDI-UEFISCDI, project number PN-III-P1-1.1-PD-2019-0733, within PNCDI-III, and POC/448/1/1/127606 CENEMED project (M.P.).