Artificial transmembrane signal transduction mediated by dynamic covalent chemistry.
View / Open Files
Publication Date
2021-11-03Journal Title
Chem Sci
ISSN
2041-6520
Publisher
Royal Society of Chemistry (RSC)
Volume
12
Issue
42
Pages
14059-14064
Language
eng
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Bravin, C., Duindam, N., & Hunter, C. A. (2021). Artificial transmembrane signal transduction mediated by dynamic covalent chemistry.. Chem Sci, 12 (42), 14059-14064. https://doi.org/10.1039/d1sc04741h
Abstract
Reversible formation of covalent adducts between a thiol and a membrane-anchored Michael acceptor has been used to control the activation of a caged enzyme encapsulated inside vesicles. A peptide substrate and papain, caged as the mixed disulfide with methane thiol, were encapsulated inside vesicles, which contained Michael acceptors embedded in the lipid bilayer. In the absence of the Michael acceptor, addition of thiols to the external aqueous solution did not activate the enzyme to any significant extent. In the presence of the Michael acceptor, addition of benzyl thiol led to uncaging of the enzyme and hydrolysis of the peptide substrate to generate a fluorescence output signal. A charged thiol used as the input signal did not activate the enzyme. A Michael acceptor with a polar head group that cannot cross the lipid bilayer was just as effective at delivering benzyl thiol to the inner compartment of the vesicles as a non-polar Michael acceptor that can diffuse across the bilayer. The concentration dependence of the output signal suggests that the mechanism of signal transduction is based on increasing the local concentration of thiol present in the vesicles by the formation of Michael adducts. An interesting feature of this system is that enzyme activation is transient, which means that sequential addition of aliquots of thiol can be used to repeatedly generate an output signal.
Keywords
Bioengineering
Sponsorship
Horizon 2020 research and innovation programme under the Marie-Sklodowska Curie grant agreement No 837706; Backer foundation
Funder references
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (837706)
Identifiers
PMC8565364, 34760189
External DOI: https://doi.org/10.1039/d1sc04741h
This record's URL: https://www.repository.cam.ac.uk/handle/1810/332326
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk