Show simple item record

dc.contributor.authorBravin, Carlo
dc.contributor.authorDuindam, Nol
dc.contributor.authorHunter, Christopher
dc.date.accessioned2022-01-07T16:46:47Z
dc.date.available2022-01-07T16:46:47Z
dc.date.issued2021-11-03
dc.identifier.issn2041-6520
dc.identifier.otherPMC8565364
dc.identifier.other34760189
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/332326
dc.description.abstractReversible formation of covalent adducts between a thiol and a membrane-anchored Michael acceptor has been used to control the activation of a caged enzyme encapsulated inside vesicles. A peptide substrate and papain, caged as the mixed disulfide with methane thiol, were encapsulated inside vesicles, which contained Michael acceptors embedded in the lipid bilayer. In the absence of the Michael acceptor, addition of thiols to the external aqueous solution did not activate the enzyme to any significant extent. In the presence of the Michael acceptor, addition of benzyl thiol led to uncaging of the enzyme and hydrolysis of the peptide substrate to generate a fluorescence output signal. A charged thiol used as the input signal did not activate the enzyme. A Michael acceptor with a polar head group that cannot cross the lipid bilayer was just as effective at delivering benzyl thiol to the inner compartment of the vesicles as a non-polar Michael acceptor that can diffuse across the bilayer. The concentration dependence of the output signal suggests that the mechanism of signal transduction is based on increasing the local concentration of thiol present in the vesicles by the formation of Michael adducts. An interesting feature of this system is that enzyme activation is transient, which means that sequential addition of aliquots of thiol can be used to repeatedly generate an output signal.
dc.description.sponsorshipHorizon 2020 research and innovation programme under the Marie-Sklodowska Curie grant agreement No 837706; Backer foundation
dc.languageeng
dc.publisherRoyal Society of Chemistry (RSC)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceessn: 2041-6539
dc.sourcenlmid: 101545951
dc.titleArtificial transmembrane signal transduction mediated by dynamic covalent chemistry.
dc.typeArticle
dc.date.updated2022-01-07T16:46:46Z
prism.endingPage14064
prism.issueIdentifier42
prism.publicationNameChem Sci
prism.startingPage14059
prism.volume12
dc.identifier.doi10.17863/CAM.79772
dcterms.dateAccepted2021-10-05
rioxxterms.versionofrecord10.1039/d1sc04741h
rioxxterms.versionVoR
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidHunter, Christopher [0000-0002-5182-1859]
dc.identifier.eissn2041-6539
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (837706)
cam.issuedOnline2021


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International