Show simple item record

dc.contributor.authorMing, Alison
dc.contributor.authorHitchcock, P
dc.date.accessioned2022-01-07T16:50:26Z
dc.date.available2022-01-07T16:50:26Z
dc.date.issued2022-01-16
dc.date.submitted2021-07-09
dc.identifier.issn2169-897X
dc.identifier.otherjgrd57540
dc.identifier.other2021jd035548
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/332382
dc.descriptionFunder: Leverhulme Trust; Id: http://dx.doi.org/10.13039/501100000275
dc.descriptionFunder: Newton Trust
dc.description.abstractAbstract: The inter‐annual variability in mid and lower stratospheric temperatures for the period 1984–2019 is decomposed into dynamical and radiative contributions using a radiative calculation perturbed with changes in dynamical heating, trace gases and aerosol optical depth. The temperature timeseries obtained is highly correlated with the de‐seasonalized ERA5 temperature (r2 > 0.6 in the region 15 to 70 hPa, 1992 to 2019–after the Pinatubo volcanic eruption). Ozone and dynamical heating contributions are found to be equally important, with water vapor, stratospheric aerosols, and carbon dioxide playing smaller roles. Prominent aspects of the temperature timeseries are closely reproduced, including the 1991 Pinatubo volcanic eruption, the year‐2000 water vapor drop, and the 2016 Quasi‐biennial oscillation (QBO) disruption. Below 20 hPa, ozone is primarily controlled by transport and is positively correlated to the upwelling. This ozone‐transport feedback acts to increase the temperature response to a change in upwelling by providing an additional ozone‐induced radiative temperature change. This can be quantified as an enhancement of the dynamical heating of about 20% at 70 hPa. A Principal Oscillation Pattern (POP) analysis is used to estimate the contribution of the ozone QBO (±1 K at 70 hPa). The non‐QBO ozone variability is also shown to be significant. Using the QBO leading POP timeseries as representative of the regular QBO signal, the QBO 2016 disruption is shown to have an anomalously large radiative impact on temperature due to the ozone change ( > 3 K $ > 3\hspace*{.5em}\mathrm{K}$ at 70 hPa).
dc.languageen
dc.publisherAmerican Geophysical Union (AGU)
dc.subjectClimate and Dynamics
dc.subjectATMOSPHERIC COMPOSITION AND STRUCTURE
dc.subjectMiddle atmosphere: composition and chemistry
dc.subjectVolcanic effects
dc.subjectAir/sea constituent fluxes
dc.subjectMiddle atmosphere: constituent transport and chemistry
dc.subjectMiddle atmosphere: energy deposition
dc.subjectBIOGEOSCIENCES
dc.subjectClimate dynamics
dc.subjectModeling
dc.subjectCOMPUTATIONAL GEOPHYSICS
dc.subjectNumerical solutions
dc.subjectCRYOSPHERE
dc.subjectAvalanches
dc.subjectMass balance
dc.subjectGEODESY AND GRAVITY
dc.subjectOcean monitoring with geodetic techniques
dc.subjectOcean/Earth/atmosphere/hydrosphere/cryosphere interactions
dc.subjectGlobal change from geodesy
dc.subjectGLOBAL CHANGE
dc.subjectAbrupt/rapid climate change
dc.subjectClimate variability
dc.subjectEarth system modeling
dc.subjectImpacts of global change
dc.subjectLand/atmosphere interactions
dc.subjectOceans
dc.subjectRegional climate change
dc.subjectSea level change
dc.subjectSolid Earth
dc.subjectWater cycles
dc.subjectHYDROLOGY
dc.subjectClimate impacts
dc.subjectHydrological cycles and budgets
dc.subjectINFORMATICS
dc.subjectMARINE GEOLOGY AND GEOPHYSICS
dc.subjectGravity and isostasy
dc.subjectATMOSPHERIC PROCESSES
dc.subjectMiddle atmosphere dynamics
dc.subjectRadiative processes
dc.subjectStratospheric dynamics
dc.subjectClimate change and variability
dc.subjectClimatology
dc.subjectGeneral circulation
dc.subjectOcean/atmosphere interactions
dc.subjectRegional modeling
dc.subjectTheoretical modeling
dc.subjectOCEANOGRAPHY: GENERAL
dc.subjectClimate and interannual variability
dc.subjectNumerical modeling
dc.subjectNATURAL HAZARDS
dc.subjectAtmospheric
dc.subjectGeological
dc.subjectOceanic
dc.subjectPhysical modeling
dc.subjectClimate impact
dc.subjectRisk
dc.subjectDisaster risk analysis and assessment
dc.subjectOCEANOGRAPHY: PHYSICAL
dc.subjectAir/sea interactions
dc.subjectDecadal ocean variability
dc.subjectOcean influence of Earth rotation
dc.subjectSea level: variations and mean
dc.subjectSurface waves and tides
dc.subjectTsunamis and storm surges
dc.subjectPALEOCEANOGRAPHY
dc.subjectPOLICY SCIENCES
dc.subjectBenefit‐cost analysis
dc.subjectRADIO SCIENCE
dc.subjectRadio oceanography
dc.subjectSEISMOLOGY
dc.subjectEarthquake ground motions and engineering seismology
dc.subjectVolcano seismology
dc.subjectVOLCANOLOGY
dc.subjectVolcano/climate interactions
dc.subjectAtmospheric effects
dc.subjectVolcano monitoring
dc.subjectEffusive volcanism
dc.subjectMud volcanism
dc.subjectExplosive volcanism
dc.subjectVolcanic hazards and risks
dc.subjectResearch Article
dc.subjectstratosphere
dc.subjectdynamics
dc.subjectradiation
dc.subjecttropics
dc.subjectTTL
dc.subjectERA5
dc.titleWhat Contributes to the Inter-Annual Variability in Tropical Lower Stratospheric Temperatures?
dc.typeArticle
dc.date.updated2022-01-07T16:50:25Z
prism.issueIdentifier1
prism.publicationNameJournal of Geophysical Research: Atmospheres
prism.volume127
dc.identifier.doi10.17863/CAM.79828
dcterms.dateAccepted2021-12-14
rioxxterms.versionofrecord10.1029/2021JD035548
rioxxterms.versionAO
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.contributor.orcidMing, Alison [0000-0001-5786-6188]
dc.contributor.orcidHitchcock, P [0000-0001-8993-3808]
dc.identifier.eissn2169-8996
pubs.funder-project-idLeverhulme Trust (ECF-2018-336)
pubs.funder-project-idIsaac Newton Trust (18.08(n))
cam.issuedOnline2021-12-30


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record