On blow up for the energy super critical defocusing nonlinear Schrödinger equations
Authors
Merle, Frank
Raphaël, Pierre
Rodnianski, Igor
Szeftel, Jeremie
Publication Date
2022-01Journal Title
Inventiones mathematicae
ISSN
0020-9910
Publisher
Springer Science and Business Media LLC
Volume
227
Issue
1
Pages
247-413
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Merle, F., Raphaël, P., Rodnianski, I., & Szeftel, J. (2022). On blow up for the energy super critical defocusing nonlinear Schrödinger equations. Inventiones mathematicae, 227 (1), 247-413. https://doi.org/10.1007/s00222-021-01067-9
Abstract
<jats:title>Abstract</jats:title><jats:p>We consider the energy supercritical <jats:italic>defocusing</jats:italic> nonlinear Schrödinger equation <jats:disp-formula><jats:alternatives><jats:tex-math>$$\begin{aligned} i\partial _tu+\Delta u-u|u|^{p-1}=0 \end{aligned}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:msub>
<mml:mi>∂</mml:mi>
<mml:mi>t</mml:mi>
</mml:msub>
<mml:mi>u</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>Δ</mml:mi>
<mml:mi>u</mml:mi>
<mml:mo>-</mml:mo>
<mml:mi>u</mml:mi>
<mml:msup>
<mml:mrow>
<mml:mo>|</mml:mo>
<mml:mi>u</mml:mi>
<mml:mo>|</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:mrow>
</mml:math></jats:alternatives></jats:disp-formula>in dimension <jats:inline-formula><jats:alternatives><jats:tex-math>$$d\ge 5$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>d</mml:mi>
<mml:mo>≥</mml:mo>
<mml:mn>5</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>. In a suitable range of energy supercritical parameters (<jats:italic>d</jats:italic>, <jats:italic>p</jats:italic>), we prove the existence of <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {C}}^\infty $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mi>∞</mml:mi>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> well localized spherically symmetric initial data such that the corresponding unique strong solution blows up in finite time. Unlike other known blow up mechanisms, the singularity formation does not occur by concentration of a soliton or through a self similar solution, which are unknown in the defocusing case, but via a <jats:italic>front mechanism</jats:italic>. Blow up is achieved by <jats:italic>compression</jats:italic> for the associated hydrodynamical flow which in turn produces a highly oscillatory singularity. The front blow up profile is chosen among the countable family of <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {C}}^\infty $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mi>∞</mml:mi>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> spherically symmetric self similar solutions to the compressible Euler equation whose existence and properties in a suitable range of parameters are established in the companion paper (Merle et al. in Preprint (2019)) under a non degeneracy condition which is checked numerically.</jats:p>
Keywords
Article, 35Q55
Identifiers
s00222-021-01067-9, 1067
External DOI: https://doi.org/10.1007/s00222-021-01067-9
This record's URL: https://www.repository.cam.ac.uk/handle/1810/332537
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk