A conceptual study of a high gradient trapped field magnet (HG-TFM) toward providing a quasi-zero gravity space on Earth
Publication Date
2021Journal Title
Superconductor Science and Technology
ISSN
0953-2048
Publisher
IOP Publishing
Volume
34
Issue
3
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Takahashi, K., Fujishiro, H., & Ainslie, M. (2021). A conceptual study of a high gradient trapped field magnet (HG-TFM) toward providing a quasi-zero gravity space on Earth. Superconductor Science and Technology, 34 (3) https://doi.org/10.1088/1361-6668/abd386
Abstract
<jats:title>Abstract</jats:title>
<jats:p>In this work, we propose a new concept of a high gradient trapped field magnet (HG-TFM). The HG-TFM is made from (RE)BaCuO bulk superconductors, in which slit ring bulks (slit-TFMs) are tightly stacked with TFM cylinders (full-TFMs), and state-of-the-art numerical simulations were used to investigate the magnetic and mechanical properties in detail during and after magnetization. A maximum value of the magnetic field gradient product of <jats:inline-formula>
<jats:tex-math><?CDATA ${B_z} \cdot {\text{d}}{B_z}/{\text{d}}z$?></jats:tex-math>
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mi>z</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mo>⋅</mml:mo>
<mml:mrow>
<mml:mtext>d</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mi>z</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mo>/</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mtext>d</mml:mtext>
</mml:mrow>
<mml:mi>z</mml:mi>
</mml:math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="sustabd386ieqn1.gif" xlink:type="simple" />
</jats:inline-formula> = 6040 T<jats:sup>2</jats:sup> m<jats:sup>−1</jats:sup> was obtained after conventional field cooled magnetization (FCM) with an applied field, <jats:italic>B</jats:italic>
<jats:sub>app</jats:sub>, of 10 T of the HG-TFM with 60 mm in outer diameter and 10 mm in inner diameter. This value may be the highest value ever reported compared to any other magnetic sources. The <jats:inline-formula>
<jats:tex-math><?CDATA ${B_z} \cdot {\text{d}}{B_z}/{\text{d}}z$?></jats:tex-math>
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mi>z</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mo>⋅</mml:mo>
<mml:mrow>
<mml:mtext>d</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mi>z</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mo>/</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mtext>d</mml:mtext>
</mml:mrow>
<mml:mi>z</mml:mi>
</mml:math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="sustabd386ieqn2.gif" xlink:type="simple" />
</jats:inline-formula> value increased with decreasing inner diameter of the HG-TFM and with increasing <jats:italic>B</jats:italic>
<jats:sub>app</jats:sub> during FCM. The electromagnetic stress in the HG-TFM during the FCM process mainly results from the hoop stress along the circumferential direction. The simulations suggested that there is no fracture risk of the bulk components during FCM from 10 T in a proposed realistic configuration of the HG-TFM where both TFM parts are mounted in Al-alloy rings and the whole HG-TFM is encapsulated in a steel capsule. A quasi-zero gravity space can be realized in the HG-TFM with a high <jats:inline-formula>
<jats:tex-math><?CDATA ${B_z} \cdot {\text{d}}{B_z}/{\text{d}}z$?></jats:tex-math>
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mi>z</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mo>⋅</mml:mo>
<mml:mrow>
<mml:mtext>d</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mi>z</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mo>/</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mtext>d</mml:mtext>
</mml:mrow>
<mml:mi>z</mml:mi>
</mml:math>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="sustabd386ieqn3.gif" xlink:type="simple" />
</jats:inline-formula> value in an open space outside the vacuum chamber. The HG-TFM device can act as a compact and cryogen-free desktop-type magnetic source to provide a large magnetic force and could be useful in a number of life/medical science applications, such as protein crystallization and cell culture.</jats:p>
Keywords
bulk superconductors, trapped field magnets, high gradient magnets, finite element method, magnetic levitation, quasi-zero gravity
Sponsorship
JSPS KAKENHI Grant No. 19K05240
Adaptable and Seamless Technology transfer Program through Target-driven R&D (A-STEP) from Japan Science and Technology Agency (JST), Grant Nos. VP30218088419 and JPMJTM20AK
Funder references
Engineering and Physical Sciences Research Council (EP/P020313/1)
Identifiers
sustabd386, abd386, sust-104164.r1
External DOI: https://doi.org/10.1088/1361-6668/abd386
This record's URL: https://www.repository.cam.ac.uk/handle/1810/332548
Rights
Licence:
http://creativecommons.org/licenses/by/4.0
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk