Show simple item record

dc.contributor.authorRathmann, NM
dc.contributor.authorLilien, DA
dc.contributor.authorGrinsted, A
dc.contributor.authorGerber, TA
dc.contributor.authorYoung, TJ
dc.contributor.authorDahl-Jensen, D
dc.date.accessioned2022-01-10T12:51:44Z
dc.date.available2022-01-10T12:51:44Z
dc.date.issued2022
dc.date.submitted2021-10-04
dc.identifier.issn0094-8276
dc.identifier.othergrl63517
dc.identifier.other2021gl096244
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/332566
dc.description.abstractAbstract: We introduce a transfer matrix model for radio‐wave propagation through layered anisotropic ice that permits an arbitrary dielectric permittivity tensor in each layer. The model is used to investigate how crystal orientation fabrics without a vertical principal direction affect polarimetric radar returns over glaciers and ice sheets. By expanding the c‐axis orientation distribution in terms of a spherical harmonic series, we find that radar returns from synthetic fabric profiles are relatively insensitive to the harmonic mode responsible for a nonvertical principal direction; however, only for normally incident waves. Consequently, the strength of this mode might be relatively difficult to infer in glaciers and ice sheets, which in turn has implications for the ability to determine the full second‐order structure tensor, needed to infer the local flow regime, flow history, or to represent the directional viscosity structure of glacier ice for ice‐flow modeling.
dc.languageen
dc.publisherAmerican Geophysical Union (AGU)
dc.subjectCryosphere
dc.subjectModeling in glaciology
dc.subjectATMOSPHERIC COMPOSITION AND STRUCTURE
dc.subjectAir/sea constituent fluxes
dc.subjectVolcanic effects
dc.subjectBIOGEOSCIENCES
dc.subjectClimate dynamics
dc.subjectModeling
dc.subjectCOMPUTATIONAL GEOPHYSICS
dc.subjectNumerical solutions
dc.subjectCRYOSPHERE
dc.subjectIce sheets
dc.subjectRemote sensing
dc.subjectProperties
dc.subjectGlaciology
dc.subjectSnow
dc.subjectIce
dc.subjectAvalanches
dc.subjectMass balance
dc.subjectGEODESY AND GRAVITY
dc.subjectOcean monitoring with geodetic techniques
dc.subjectOcean/Earth/atmosphere/hydrosphere/cryosphere interactions
dc.subjectGlobal change from geodesy
dc.subjectGLOBAL CHANGE
dc.subjectAbrupt/rapid climate change
dc.subjectClimate variability
dc.subjectCryospheric change
dc.subjectEarth system modeling
dc.subjectImpacts of global change
dc.subjectLand/atmosphere interactions
dc.subjectOceans
dc.subjectRegional climate change
dc.subjectSea level change
dc.subjectSolid Earth
dc.subjectWater cycles
dc.subjectHYDROLOGY
dc.subjectClimate impacts
dc.subjectHydrological cycles and budgets
dc.subjectSnow and ice
dc.subjectINFORMATICS
dc.subjectMARINE GEOLOGY AND GEOPHYSICS
dc.subjectGravity and isostasy
dc.subjectATMOSPHERIC PROCESSES
dc.subjectClimate change and variability
dc.subjectClimatology
dc.subjectGeneral circulation
dc.subjectOcean/atmosphere interactions
dc.subjectRegional modeling
dc.subjectTheoretical modeling
dc.subjectOCEANOGRAPHY: GENERAL
dc.subjectClimate and interannual variability
dc.subjectNumerical modeling
dc.subjectNATURAL HAZARDS
dc.subjectAtmospheric
dc.subjectGeological
dc.subjectOceanic
dc.subjectPhysical modeling
dc.subjectClimate impact
dc.subjectRisk
dc.subjectDisaster risk analysis and assessment
dc.subjectOCEANOGRAPHY: PHYSICAL
dc.subjectAir/sea interactions
dc.subjectDecadal ocean variability
dc.subjectOcean influence of Earth rotation
dc.subjectSea level: variations and mean
dc.subjectSurface waves and tides
dc.subjectTsunamis and storm surges
dc.subjectPALEOCEANOGRAPHY
dc.subjectPOLICY SCIENCES
dc.subjectBenefit‐cost analysis
dc.subjectRADIO SCIENCE
dc.subjectRadio oceanography
dc.subjectSEISMOLOGY
dc.subjectEarthquake ground motions and engineering seismology
dc.subjectVolcano seismology
dc.subjectVOLCANOLOGY
dc.subjectVolcano/climate interactions
dc.subjectAtmospheric effects
dc.subjectVolcano monitoring
dc.subjectEffusive volcanism
dc.subjectMud volcanism
dc.subjectExplosive volcanism
dc.subjectVolcanic hazards and risks
dc.subjectResearch Letter
dc.subjectanisotropic ice
dc.subjectice sheets
dc.subjectradio wave modeling
dc.titleOn the Limitations of Using Polarimetric Radar Sounding to Infer the Crystal Orientation Fabric of Ice Masses
dc.typeArticle
dc.date.updated2022-01-10T12:51:43Z
prism.issueIdentifier1
prism.publicationNameGeophysical Research Letters
prism.volume49
dc.identifier.doi10.17863/CAM.80016
dcterms.dateAccepted2021-12-08
rioxxterms.versionofrecord10.1029/2021GL096244
rioxxterms.versionAO
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidRathmann, NM [0000-0001-7140-0931]
dc.contributor.orcidLilien, DA [0000-0001-8667-8020]
dc.contributor.orcidGerber, TA [0000-0002-0368-7229]
dc.contributor.orcidYoung, TJ [0000-0001-5865-3459]
dc.identifier.eissn1944-8007
pubs.funder-project-idVillum Fonden (Villum Foundation) (16572)
cam.issuedOnline2022-01-09


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record