Show simple item record

dc.contributor.authorWelsh, Timothy
dc.contributor.authorKrainer, Georg
dc.contributor.authorEspinosa, Jorge R
dc.contributor.authorJoseph, Jerelle
dc.contributor.authorSridhar, Akshay
dc.contributor.authorJahnel, Marcus
dc.contributor.authorArter, William E
dc.contributor.authorSaar, Kadi
dc.contributor.authorAlberti, Simon
dc.contributor.authorCollepardo-Guevara, Rosana
dc.contributor.authorKnowles, Tuomas
dc.date.accessioned2022-01-11T00:33:07Z
dc.date.available2022-01-11T00:33:07Z
dc.date.issued2022-01-26
dc.identifier.issn1530-6984
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/332616
dc.description.abstractLiquid-liquid phase separation underlies the formation of biological condensates. Physically, such systems are microemulsions that in general have a propensity to fuse and coalesce; however, many condensates persist as independent droplets in the test tube and inside cells. This stability is crucial for their function, but the physicochemical mechanisms that control the emulsion stability of condensates remain poorly understood. Here, by combining single-condensate zeta potential measurements, optical microscopy, tweezer experiments, and multiscale molecular modeling, we investigate how the nanoscale forces that sustain condensates impact their stability against fusion. By comparing peptide-RNA (PR25:PolyU) and proteinaceous (FUS) condensates, we show that a higher condensate surface charge correlates with a lower fusion propensity. Moreover, measurements of single condensate zeta potentials reveal that such systems can constitute classically stable emulsions. Taken together, these results highlight the role of passive stabilization mechanisms in protecting biomolecular condensates against coalescence.
dc.publisherAmerican Chemical Society
dc.rightsAll Rights Reserved
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserved
dc.titleSurface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates.
dc.typeArticle
dc.publisher.departmentDepartment of Chemistry Student
dc.publisher.departmentDepartment of Chemistry
dc.publisher.departmentKing's College
dc.date.updated2022-01-10T15:48:45Z
prism.numberacs.nanolett.1c03138
prism.publicationNameNano Letters: a journal dedicated to nanoscience and nanotechnology
dc.identifier.doi10.17863/CAM.80063
dcterms.dateAccepted2022-01-10
rioxxterms.versionofrecord10.1021/acs.nanolett.1c03138
rioxxterms.versionAM
dc.contributor.orcidWelsh, Timothy [0000-0001-7817-5722]
dc.contributor.orcidKrainer, Georg [0000-0002-9626-7636]
dc.contributor.orcidJoseph, Jerelle [0000-0003-4525-180X]
dc.contributor.orcidSaar, Kadi [0000-0002-5926-3628]
dc.contributor.orcidKnowles, Tuomas [0000-0002-7879-0140]
dc.identifier.eissn1530-6992
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEuropean Research Council (337969)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P020259/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (766972)
pubs.funder-project-idEuropean Research Council (803326)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (841466)
cam.issuedOnline2022-01-10
cam.orpheus.success2022-01-10 - Embargo set during processing via Fast-track
cam.depositDate2022-01-10
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement
rioxxterms.freetoread.startdate2023-01-10


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record