Show simple item record

dc.contributor.authorBarone, Damiano
dc.contributor.authorCarnicer-Lombarte, Alejandro
dc.contributor.authorTourlomousis, Panagiotis
dc.contributor.authorHamilton, Russell S
dc.contributor.authorPrater, Malwina
dc.contributor.authorRutz, Alexandra L
dc.contributor.authorDimov, Ivan B
dc.contributor.authorMalliaras, George
dc.contributor.authorLacour, Stephanie P
dc.contributor.authorRobertson, Avril AB
dc.contributor.authorFranze, Kristian
dc.contributor.authorFawcett, James W
dc.contributor.authorBryant, Clare
dc.description.abstractSignificanceImplantable electronic medical devices (IEMDs) are used for some clinical applications, representing an exciting prospect for the transformative treatment of intractable conditions such Parkinson's disease, deafness, and paralysis. The use of IEMDs is limited at the moment because, over time, a foreign body reaction (FBR) develops at the device-neural interface such that ultimately the IEMD fails and needs to be removed. Here, we show that macrophage nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity drives the FBR in a nerve injury model yet integration of an NLRP3 inhibitor into the device prevents FBR while allowing full healing of damaged neural tissue to occur.
dc.description.sponsorshipPart of the RNA-Seq work was performed with the Genomics and Transcriptomics Core, which is funded by the UK Medical Research Council (MRC) Metabolic Disease Unit (MRC_MC_UU_00014/5) and a Wellcome Trust Major Award (208363/Z/17/Z), and guidance from Marcella Ma, whom the authors wish to thank. CEB was supported by a Wellcome Trust Investigator award (108045/Z/15/Z). This work was also supported by the UK Wellcome Trust (Translational Medicine and Therapeutics PhD Programme Fellowship 109511/Z/15/Z to DGB), the UK Health Education England and the National Institute for Health Research (HEE/ NIHR ICA Program Clinical Lectureship CL-2019-14-004 to DGB), the UK Medical Research Council (MRC) and the Sackler Foundation (doctoral training grant RG70550 to ACL), the Engineering and Physical Sciences Research Council (EPSRC) Cambridge NanoDTC (EP/L015978/1), the Centre for Trophoblast Research (MP and RSH), the Whitaker International Scholars Program (ALR), the European Commission’s Horizon 2020 (Marie Sklodowska-Curie Fellowship 797506 to ALR), the Bertarelli Foundation (SPL), the European Research Council (Consolidator Award 772426 to KF), the UK Biotechnology and Biological Sciences Research Council (Research Grant BB/N006402/1 to KF), and the Alexander von Humboldt Foundation (Humboldt Professorship to KF).
dc.publisherProceedings of the National Academy of Sciences
dc.rightsAttribution 4.0 International
dc.titlePrevention of the foreign body response to implantable medical devices by inflammasome inhibition.
prism.publicationNameProc Natl Acad Sci U S A
dc.contributor.orcidBarone, Damiano [0000-0002-0091-385X]
dc.contributor.orcidTourlomousis, Panagiotis [0000-0002-6152-8066]
dc.contributor.orcidHamilton, Russell S [0000-0002-0598-3793]
dc.contributor.orcidPrater, Malwina [0000-0002-8202-5345]
dc.contributor.orcidMalliaras, George [0000-0002-4582-8501]
dc.contributor.orcidLacour, Stephanie P [0000-0001-9075-4022]
dc.contributor.orcidRobertson, Avril AB [0000-0002-9652-8357]
dc.contributor.orcidFranze, Kristian [0000-0002-8425-7297]
dc.contributor.orcidBryant, Clare [0000-0002-2924-0038]
rioxxterms.typeJournal Article/Review
pubs.funder-project-idWellcome Trust (085686/Z/08/A)
cam.orpheus.successWed Mar 23 10:26:24 GMT 2022 - Embargo updated
pubs.licence-display-nameApollo Repository Deposit Licence Agreement

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International