Repository logo
 

Two-dimensional buoyant plumes in a uniform co-flow

Accepted version
Peer-reviewed

Type

Article

Change log

Abstract

jats:pThe behaviour of turbulent, buoyant, planar plumes is fundamentally coupled to the environment within which they develop. The effect of a background stratification directly influences a plumes buoyancy and has been the subject of numerous studies. Conversely, the effect of an ambient co-flow, which directly influences the vertical momentum of a plume, has not previously been the subject of theoretical investigation. The governing conservation equations for the case of a uniform co-flow are derived and the local dynamical behaviour of the plume is shown to be characterised by the scaled source Richardson number and the relative magnitude of the co-flow and plume source velocities. For forced, pure and lazy plume release conditions the co-flow acts to narrow the plume and reduce both the dilution and the asymptotic Richardson number relative to the classic zero co-flow case. Analytical solutions are developed for pure plumes from line sources, and for highly forced and highly lazy releases from sources of finite width in a weak co-flow. Contrary to releases in quiescent surroundings, our solutions show that all classes of release can exhibit plume contraction and the associated necking. For entraining plumes, a dynamical invariance spatially only occurs for pure and forced releases and we derive the co-flow strengths that lead to this invariance.</jats:p>

Description

Keywords

plumes, thermals

Journal Title

Journal of Fluid Mechanics

Conference Name

Journal ISSN

0022-1120
1469-7645

Volume Title

932

Publisher

Cambridge University Press (CUP)
Sponsorship
Innovate UK (106163)